

MENTARY COURSE

OF MATHEMATICS

HALL and STEVENS

PRESENTED то
The University of Toronto BY
the exp Clark Company

Examination copies of the accompanying Book have just reached us from the Publishers. We have pleasure in sending one to your address.

THE COPP, CLARK COMPANY, LIMITED
9 Front St. West, TORONTO

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

AN ELEMENTARY COURSE OF
 MATHEMATICS

AN ELEMENTARY

COURSE OF MATHEMATICS

COMPRISING

ARITHMETIC, ALGEBRA AND EUCLID

BY
H. S. HALL, M.A., and F. H. Stevens, M.A. masters of the military side, cliftor college

> Gíndon MACMILLAN AND CO., Limited new york : the macmillan company 1899

b 1

GLASGGW: PRINTED AT THE UNIVERSITY PRESS by robert maclehose and co.

PREFACE.

The main purpose of this text-book is to provide in a single and inexpensive volume a short course of Arithmetic, Algebra, and Euclid specially adapted to the needs of a large and increasing class of students : namely, those who after leaving school desire to continue their study of Elementary Mathematics, partly with help derived from evening classes, and partly by means of private work at home.

The majority of such students work under somewhat difficult conditions. They have already received a certain training in Arithmetic, but their mathematical education has gone no further; and the problem which meets them is how-with very limited instruction and leisure-to maintain what they have already learned, and at the same time to acquire from the beginning a sound knowledge of Elementary Algebra and Geometry. What is needed by such learners is first of all a course of varied and graduated Exercises in Arithmetic ; then a careful exposition of the two new subjects, Algebra and Euclid, arranged and treated in such a way as to smooth the path of a beginner, and to encourage him to overcome difficulties by relying on his own industry and intelligence.

These considerations have been kept in view in compiling the following pages.

Accordingly the section on Arithmetic is not intended to take the place of an ordinary text-book, but to supplement lectures and aid in the work of revision. It provides a series of progressive examples so arranged as to distribute the necessary matter over a winter session of some thirty weeks,
the examples in each Exercise being graduated with a view to facilitating home work as much as possible. The later Exercises have been prefaced by a few notes and hints together with solutions of some typical questions. These have been selected with great care, and it is hoped that they will sufficiently recall and illustrate the more important methods required in the Exercises which follow.

The section on Algebra assumes no previous knowledge; and those parts of the subject with which it deals are treated from the first as fully as is consistent with its elementary purpose. It covers all the ground usually taken before Quadratic Equations, and will be found complete as a first text-book for beginners within the limits indicated.

The geometrical section contains Euclid's First Book with Exercises and Additional Theorems. This is based upon the Authors' edition of Euclid's Elements; but the text has been thoroughly revised, and some additional notes and test questions have been introduced. Deductions and Exercises on which it is desired to lay special stress, as being in themselves important geometrical results, have been italicised.

H. S. HALL.
F. H. STEVENS.

May, 1899.
*** In the Arithmetic Section examples taken from the Examination Papers of the Science and Art Department will be found distinguished by an asterisk at the end of the different Exercises.

CONTENTS.

ARITHMETIC.

PAGE
I. Compound Quantities. Primary Rules 1
II. Further Questions on Compound Quantities 2
iII. Prime Factors. Tests of Divisiblity. Greatest Common Divisor. Least Common Multifle 3
IV. Fractions. Primary Rules 4
V. Fractions. Compound Quantities 7
VI. Decimals. Primary Rules 9
VII. Recurring Decimals 16
VIII. Decimals of Compound Quantities 18
IX. Miscellaneous Examples on Fractions and Decimals 22
X. Practice 24
XI. Ratio and Proportion 27
XII. Compaund Proportion 30
XIII. Proportional Parts 33
XiV. Square Meastre. Rectangular Areas 36
XV. Cubic Measure. Rectangular Solids 41
XVI. Square Root 45
XVII. Cube Root 48
PAGE
XVIII. The Metric System of Measures and Weight 50
XIX. The Mfrric System Continued. Foreign Coinage 54
XX. Percentages. Commission 58
XXI. Profit and Loss 60
XXII. Invoices and Estimates 63
XXIII. Simple Interest 65
XXIV. Simple Interest Continued 67
XXV. Compound Interest 70
XXVI. Present Worth and Discount 73
XXVII. Stocks 76
XXVIII. Stocks and Shares 79
XXIX. Miscellaneous Examples 83
XXX. Further Miscellaneous Examples 86
Answers 89
ALGEBRA.
CHAP.
I. Definitions. Substitutions 1
II. Negative Quantities. Addition 6
III. Subtraction 13
IV. Multiplication 15
V. Division 22
VI. Removal and Insertion of Brackets 28
VII. Simple Equations 33
VIII. Symbolical Expression 38
IX. Problems Leading to Simple Equations 42
X. Simultaneous Equations 48
CHAP. PAGE
XI. Problems Leading to Simultaneous Equations 54
Miscellaneous Examples I. 57
XiI. Resolution into Factors 59
XIII. Highest Common Factor 70
XIV. Lowest Common Multiple 76
Miscellaneous Examples II 78
XV. Fractions 80
Miscellaneous Examples III. 97
XVI. Harder Eqjations 99
Miscellaneots Examples IV. 105
XVII. Harder Problems 106
Miscellaneous Examples V. 110
XVIII. Positive Integral Indices 112
Miscellaneous Examples VI. 115
Answers 1191
EUCLID.
BOOK I.
Definitions. Postulates. Axioms 1
Introductory 10
Section I. Propositions 1-26 12
Section II. Propositions 27-34 56
Section III. Propositions 35-48 72
Additional Theorems 95
Exercises on Book I. 102

ARITHMETIC.

First Week. Compound Quantities. Primary Rules.

Examples I.

1. Having a balance of $£ 269$ at my bank, I draw cheques for $£ 75.15 s .5 d ., £ 37.7 s .1$. ., and $£ 42.4 s .2 d$. How much have I left?
2. In four successive years a business cleared $£ 401.11 \mathrm{~s}$. 10d., £491. 8s. 8d., £528. 6s. $11 d$., and £719. 4s. 3 d . respectively. What were its average annual profits?
3. Multiply £107. 8s. 7 d . by 59.
4. Divide £1058. 15s. 9 d . by 142.
5. Express in feet 1 furlong 13 poles 3 yards.
6. Reduce 432,109 ounces to tons, cwts., etc.
7. To what sum will a daily payment of 1 s. $6 \frac{1}{2} d$. amount in a year of 365 days?
8. How many grains are there in 52 lbs .1 oz . Troy ?
9. How many payments of $£ 6.5$ s. 10 d . could be made from a sum of £2497. 15s. 10d.?
10. Reduce 74,327 sq. yds. to acres, roods, poles, etc.
11. Find the value of 1592 articles at $£ 1.17 \mathrm{~s} .6 \mathrm{~d}$. per dozen.
12. How many pieces of calico, each 4 yds. 2 ft .6 in . long, can be cut from a roll of 50 yards, and how much will be left?
13. A man wishing to dispose of 300 articles, sells 122 for $£ 94.11 \mathrm{~s}$., and the rest at the rate of $\frac{1}{4} d$. less each. How much does he get altogether?
14. A grocer mixes 12 lbs . of tea which cost him 28.4 d . a lb. with 10 lbs . at 2 s .6 d. , and 8 lbs . at 2 s .8 d . : if he sells all the mixture at 2 s .9 d . a lb., what is his gain?
15. If 3 tons 6 cwt. of tea are bought at $£ 10.14 \mathrm{~s}$. $8 d$. per cwt., and sold at $2 s .3 d$. per lb ., what is the total gain?
*16. A carriage wheel is 8 ft .3 in . in circumference; how many revolutions does it make in driving 7 . miles and 1331 yards?
*17. Copper weighs 550 lbs . and tin 462 lbs . to the cubic foot. What will be the weight of a cubic foot of a mixture of 6 parts copper to 5 parts tin?
*18. Four hundred calendar years contain 146,097 days. What would be the length of a calendar year in seconds, supposing all such years are alike?

Second Week. Further Questions on Compound Quantities.

Examples II.

1. In the first four months the takings of a business are respectively $£ 335.2$ s. $1 \frac{1}{2} d$., £371. 15s. $11 d$., £401. $11 s .5 \frac{1}{2} d$., and £446. 11s. $6 d$. What must be the average takings for the remaining months in order that the total turn-over for the year may be $£ 5000$?
2. In 2483267 sq . inches, how many roods, poles, square yards, etc. are there?
3. The cost of 35688 articles is $£ 4730$. 10s. $4 \frac{1}{2} d$.; at what rate is this per dozen?
4. How many times is 1 cwt. 2 qrs. 22 lbs. 4 oz. contained in 8 tons 13 cwt. 1 qr. 1 lb .8 oz .?
5. The net earnings of a company for the past year are $£ 28,651.4 s .6 d$. After carrying forward £2463. $14 s$ s. 6d . to next year's account, a dividend of 17 s. $5 \frac{1}{2} d$. per share is paid. How many shares are there?
6. How many inches are there in 2 mi .1 f .37 p .3 yds ?
7. A tradesman buying articles at the rate of $£ 3.7 \mathrm{~s} .6 d$. per score, sells at £2. $2 \mathrm{~s} .6 d$. per dozen. What profit does he make on 1000 articles?
8. Cloth was bought at $2 s .9 \frac{1}{2} d$. a yard, and sold at $3 s .3 d$. If the total profit came to $£ 2.4 s$. $0 d$., how many yards were bought and sold?
9. A wine merchant mixes 29 gallons of wine which cost him $15 s .8 d$. a gallon with 17 gallons at $23 s .4 d$. a gallon. What is the value of one gallon of the mixture?
10. Coal is bought at 24 s . per ton, and sold at $25 \mathrm{~s} .6 d$. ; how many tons must be sold a year to clear an income of $£ 350$?
*11. How many coins, each containing 5 dwt. 6 gr . of standard gold, can be struck from a bar weighing 16 lbs .10 oz .7 dwt. 18 gr .?
*12. If 1869 sovereigns are coined out of 40 lbs . Troy of standard gold, what is the weight of a sovereign in grains? And what is the value of an ounce of standard gold?
*13. Coals at 32 s . a ton are mixed with coke at 24 s . a ton in the proportion of 5 tons of coal to 3 tons of coke; find the money saved by using 11 tons of the mixture instead of 12 tons of coal.
*14. A man buys 45 bushels of apples at $2 s .6 d$. a bushel; onethird of them are spoilt; of the remainder, he sells one-third at $2 d$. a pound, and two-thirds at $4 s$. a bushel. If a bushel of apples weighs 40 lbs., what profit does he make?

Third Week. Prime Factors. Tests of Divisibility. Greatest Common Divisor. Least Common Multiple.

Examples III.

1. Which of the following numbers are divisible by $8,9,11,25$? 15327, 13016, 43875, 361911, 81576, 4957425.

Find the remainders when each of the following numbers is divided by $8,9,11$, and $25: 46820379,69014813,916348512$.
2. Obtain the remainders when (i) 468253 is divided by 385 (ii.) when 6324031 is divided by 792 by short division, carefully explaining the reason for the process.
3. From 98765 subtract any other number formed by the same digits in a different order, and divide the remainder by 9 . Explain why in all such cases the remainder must be divisible by 9 .

Break up the following numbers into their prime factors:
4. 385.
5. 702.
6. 1575.
7. 4410 .
8. 19125.
. 76725 .

Find the Greatest Common Divisor (or Measure) of the following numbers:
10. 333 and 407.
12. 3451 and 7395.
14. 4131 and 11664.
16. 546,624 , and 676.
18. 1458,4131 , and 1215.
11. 533 and 697.
13. 2604 and 3444.
15. 5544 and 6552.
17. 663,1547 , and 1989.
19. 116039, 122067, 137137.

Find the Least Common Multiple of
20. 8, 14, 36, 108.
22. $7,3,56,21,49$.
24. 25, 27, 9, 11, 15.
26. $\quad 1430$ and 2145 .
21. 42, 55, 70, 77.
23. 72, 81, 9, 8, 12 .
25. $28,52,65,70,91$.
27. 5292 and 8316.

Find the G.C.M. and L.C.M. of
28. $72,24,56,120$.
29. $51,170,153,187$.
30. 161, 253, 299, 322.
31. $3024,4752,7488$.
32. The Least Common Multiple of two numbers may be obtained by dividing their product by their Greatest Common Measure. Explain by an example the reason for this, and adapt the theorem to finding the l.c.m. of three numbers.
33. What is the least sum of money that can be distributed exactly either in half-crowns or half-guineas?
34. What is the least sum of money that can be exactly divided into equal shares, each of $2 s .4 d$., or $2 s .9 d$., or $3 s .8 d$. , or $4 s .8 d$. ?

Fourth Week. Fractions. Primary Rules.

Examples IV.

1. Explain why the value of a fraction is not changed when both numerator and denominator are multiplied (or divided) by the same number ; e.g. explain why $\frac{3}{5}=\frac{21}{35}$.

Reduce the following fractions to their lowest terms:
2. $\frac{35}{37} \frac{3}{8} \frac{8}{2}$.
3. $\frac{511}{8} 1 \frac{5}{84}$.
4. $\frac{25194}{8} 8179$.
5. $\frac{8679}{44973}$.
6. $\frac{6365 \%}{123456}$.
7. $\frac{12}{19} \frac{4}{7} \frac{3}{5} \frac{1}{1}$.
8. Explain carefully the reason of the rule for finding the sum (or difference) of two fractions : e.g. explain why $\frac{3}{3}-\frac{4}{9}=\frac{7}{45}$.

Add together the following fractions:
9. $\frac{9}{77}, 2 \frac{7}{3}, \frac{22}{6}$, and $7 \frac{10}{1}$. \quad 10. $2 \frac{7}{46}, \frac{38}{4} \frac{8}{5}, \frac{57}{230}$, and $9 \frac{5}{9}$.
11. $7 \frac{11}{1} \frac{1}{8}, \frac{17}{4}, 5 \frac{4}{9}$, and $11 \frac{11}{36}$. $12.20 \frac{11}{2}, 3 \frac{3}{16}, 11 \frac{13}{8}$. and $15 \frac{57}{112}$.
13. What fraction must be subtracted from the sum of $16 \frac{4}{7}, 2 \frac{1}{5} \frac{5}{6}$, $\frac{11}{4}$, and $\frac{17}{3}$ to leave the remainder 19 ?
14. Find a fraction with 364 as denominator which is less than unity by $\frac{2}{13}$.
15. What fraction must be added to the sum of $\frac{9}{16}, \frac{1}{2}, \frac{3}{5}$ and $\frac{5}{6}$ to give the result $3 \frac{11}{240}$?
16. Find the difference between $\frac{1}{12}+\frac{2}{3}+\frac{1}{10}$ and $\frac{1}{15}+\frac{3}{4}+\frac{1}{30}$.
17. What fraction must be added to the sum of $3 \frac{3}{8}$ and $4 \frac{1}{15}$ to make up the difference between $12 \frac{1}{8}$ and $1 \frac{17}{2}$?
18. Explain carefully what is meant by multiplying one fraction by another: e.g. explain why $\frac{2}{5} \times \frac{3}{7}=\frac{6}{35}$.

Multiply together the following fractions:
$\begin{array}{ll}\text { 19. } 1 \frac{67}{186}, \frac{144}{16} 1\end{array}, 2 \frac{55}{112}$, and $1 \frac{97}{99}$. \quad 20. $\frac{51}{9} \frac{1}{1}, 1 \frac{27}{6}, 2 \frac{4}{5} \frac{6}{5}$, and $\frac{77}{171}$.
21. Explain carefully why in order to divide a quantity by a fraction we multiply by its reciprocal : e.g. explain why $\frac{5}{71} \div \frac{2}{7}=\frac{35}{18}$.
22. Divide (i.) the product of $5 \frac{4}{9}, \frac{12}{14} 3,2 \frac{1}{7}, 8 \frac{29}{50}$ by $8 \frac{2}{5}$;

> (ii.) $\left(\frac{3}{4}+\frac{1}{3}-\frac{1}{6}\right)$ of $\frac{6}{25}$ by $\frac{11}{10}$;
> (iii.) $\left(\frac{3}{7}+\frac{1}{3}+\frac{1}{2}-\frac{11}{42}\right)$ by $\left(\frac{7}{9}+\frac{5}{8}-\frac{3}{4}\right)$.
23. What fraction must be taken from the sum of $\frac{2 \frac{5}{5}}{5}$ and $6 \frac{3}{28}$ that the result may be equal to $\frac{10 \frac{5}{6}}{1 \frac{1}{1} \frac{2}{3}}$?

Simplify the following complex fractions :
24. $\frac{2}{5}$ of $\frac{3}{7}$ of $\frac{9+\frac{12}{7}}{5+\frac{2}{1 \frac{2}{3}}}$.
25. $\frac{\frac{7}{8}+\frac{1}{2}-\frac{8}{21}}{10 \frac{1}{12} \text { of } \frac{4}{5} \text { of } \frac{15}{87} \text { of } \frac{7}{11}}$.
26. $\frac{\frac{1}{2}+\frac{3}{5}+\frac{5}{7}}{\frac{5}{2}+\frac{4}{3}+\frac{1}{7}}$.
27. $\frac{1}{39}$ of $4 \frac{1}{3}$ of $\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}$.
28. $\frac{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}{1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}} \div \frac{2}{17}$.
29. $\left(\frac{3}{4}+\frac{9}{11}-\frac{7}{8}\right) \div \frac{\frac{5}{6}+\frac{6}{3}}{3-\frac{1}{5}}$.
30. $\frac{2}{1+\frac{3}{1+\frac{2}{1 \frac{3}{3}}}}$.
31. $\frac{6+\frac{1}{6-\frac{1}{6}}}{4-\frac{1}{4-\frac{1}{4}}}$ of $10 \frac{8}{9}$.
32. By what fraction must $\frac{1}{2+\frac{1}{3}}$ be multiplied that the product may be unity?

$$
2+\frac{1}{3+\frac{1}{1+\frac{1}{4}}}
$$

33. By what fraction must unity be divided to give a quotient equivalent to the product of $\frac{2}{3+\frac{2}{3}}$ and $\frac{2}{3+\frac{2}{3+\frac{2}{3}}}$?
34. Simplify $\frac{4 \frac{1}{5}-\frac{2}{3} \text { of } \frac{5}{6}}{1 \frac{2}{3}+2 \frac{3}{7}-\frac{2}{5}}+\frac{4}{291}$; and from the result subtract

$$
\frac{1}{2}+\frac{1}{3}+\frac{\frac{1}{6}}{\frac{3}{4}-\frac{1}{3}}
$$

Reduce the following fractions to their simplest forms :
*35.

$$
\frac{\frac{1}{9} \text { of } 3 \frac{6}{13}+\frac{2}{3 \frac{1}{4}}-\frac{1}{6 \frac{1}{2}}}{5+\frac{1}{2 \frac{1}{6}}+\frac{3}{13} \text { of } 2 \frac{1}{6}}
$$

*36. $\frac{9 \frac{1}{3} \text { of } 4 \frac{5}{7} \div 8 \frac{1}{4}}{2 \frac{7}{9}-\frac{5}{12}+1 \frac{7}{36}}$.
*37. $\frac{6 \frac{1}{4}-3 \frac{1}{16}}{3 \frac{2}{5} \text { of } 1 \frac{1}{4}} \div \frac{12 \frac{4}{15}-11 \frac{2}{3}}{3 \frac{1}{3} \text { of } \frac{1}{4 \frac{1}{6}}}$.
*38. $\left\{1-\frac{\frac{3}{10}}{\left(\frac{1}{2}+\frac{1}{5}\right)^{2}}\right\} \times\left\{1-\frac{\frac{1}{10}}{\frac{1}{4}-\frac{1}{10}+\frac{1}{25}}\right\}$.
*39. $\frac{2 \frac{1}{9}}{5 \frac{3}{7}}$ of $1 \frac{1}{8}-\frac{15 \frac{3}{4}-4 \frac{3}{7} \text { of } 3 \frac{1}{2}}{3 \frac{5}{9} \text { of } \frac{3}{8}+2 \frac{2}{3}}$.
*40. $\frac{3 \frac{3}{7}}{\frac{4}{5}\left(\frac{3}{3 \frac{1}{2}} \text { of } 7\right)}+\frac{5 \frac{5}{8}}{4 \frac{1}{6}}$ of $\frac{4-\left(3 \frac{1}{3}-1 \frac{1}{5}\right)}{3 \frac{4}{15}-2 \frac{1}{60}+\frac{11}{20}}$.
*41. $\frac{100 \frac{1}{13}-91 \frac{89}{91}}{27 \frac{2}{11}+2 \frac{117}{143}}-\frac{3 \frac{3}{7}+6 \frac{3}{5} \text { of } 1 \frac{11}{39}}{1 \frac{7}{11} \text { of } 25 \frac{2}{3}+48 \frac{1}{6}}$.
*42. $\frac{44 \frac{2}{3}-3 \frac{3}{11} \text { of } 10 \frac{1}{12}}{3 \frac{1}{2}+\frac{7}{65}}+\frac{\left(5 \frac{3}{4}-3 \frac{2}{3}\right) \text { of } 2 \frac{5}{9}}{1 \frac{1}{4} \frac{13}{4} \text { of }\left(2 \frac{1}{2}+1 \frac{1}{3}\right)^{\frac{1}{4}}}$.
*43. $\frac{5+2 \frac{7}{9} \text { of } \frac{27}{5} \frac{7}{0}}{30-6 \frac{6}{11} \text { of } 2 \frac{1}{5}}+\frac{6 \frac{5}{6}}{23^{\frac{3}{7}}}$ of $\left(6 \frac{1}{21}-5 \frac{9}{14}\right)$.
*44. $\frac{13 \frac{2}{3}}{11 \frac{4}{11}}$ of $1 \frac{49}{451}-\frac{6 \frac{1}{2}-5 \frac{1}{4} \text { of } \frac{6}{7}}{4 \frac{1}{3} \text { of } \frac{7}{26}+1 \frac{1}{66}}$.

Fifth Week. Fractions. Compound Quantities.

Examples V.

Find the value of

1. $\frac{4}{15}$ of $£ 14.10 s .7 \frac{1}{2} d$.
2. $\frac{24}{49}$ of $£ 1.15$ s. $8 \frac{3}{4} d$.
3. $\frac{6}{11}$ of 14 fur. 13 p .3 yds .2 ft .
4. $1 \frac{2}{7}$ of 2 tons 10 cwt . $2 \mathrm{qrs}$.14 llss .
5. Add together $1 \frac{3}{11}$ of $£ 15.8 s .11 d$. and $\frac{4}{21}$ of $£ 3$. $1 s .3 d$.
6. From $\frac{11}{2}$ of $£ 3079$. 16s. subtract $\frac{1}{117}$ of $£ 85$. 16 s.
7. Express (i.) £2. $19 \mathrm{~s} .9 \frac{1}{2} d$. as the fraction of $£ 5.2 \mathrm{~s} .6 \mathrm{~d}$. ; and (ii.) 2 tons 3 qrs. 3 lbs. 8 oz. as the fraction of 3 tons 5 cwt. 1 qr.
8. Find the difference between $\frac{6}{7}$ of 15 ac .3 r .35 p . and $\frac{7}{9}$ of 31 ac. 2 r. 27 p.
9. By what fraction must $£ 10.8 s .8 d$. be multiplied to give the result £5. 17s. $4 \frac{1}{2} d$. ?
10. By what fraction must $£ 600.12 s .6 d$. be divided to give the quotient £250. 5s. $2 \frac{1}{2} d$.?
11. What fraction of one pound is the difference between $\frac{3}{14}$ of half-a-guinea and $\frac{11}{4} \frac{1}{8}$ of half-a-sovereign ?
12. After $\frac{13}{2} \frac{3}{1}$ of a plank had been cut off, the length of the remainder was $5 \mathrm{ft} .2 \frac{6}{7} \mathrm{in}$. : what was the length of the whole plank?
13. What fraction of 35 shillings is the sum of $2 \frac{3}{4}$ of 7 s .6 d . and $\frac{3}{2}$ of $\frac{5}{4}$ of 3 shillings?
14. If $\frac{5}{24}$ of a field is worth $£ 1065$, find the value of $\frac{3}{8}$ of it.
15. If one quarter is taken as the unit of weight, by what fraction will $10 \mathrm{lbs}$.8 oz . be expressed ?
16. If 1 mile 3 f .10 p .2 yds. 1 ft .10 in . is taken as the unit of distance, what length will be represented by the fraction $\frac{2}{7}$?
17. Add together $\frac{7}{24}$ of $£ 6.5 s .4 d$. and $\frac{1}{6}$ of $£ 12.7 \mathrm{~s} .2 d$., and express $\frac{2}{9}$ of the sum as the fraction of $£ 2.11 s .10 \mathrm{~d}$.
18. A partner receives £219. $3 s .9 d$. as $\frac{3}{16}$ of the annual profits of a business. What are the whole profits, and what fraction of the whole is $£ 250.10 \mathrm{~s}$. ?
19. If $\frac{25}{3}$ of a field is worth $£ 925$, and if the land is worth $£ 40$ an acre, find the area of the field.
20. What sum of money is the same fraction of £11. 2s. that 1 ton 12 cwt. 3 qrs. 7 lbs. is of 2 tons 19 cwt. 7 lbs.?
21. What weight is the same fraction of 26 tons 18 ewt. 2 qrs . 7 lbs. that $£ 6.8 s .10 \mathrm{~d}$. is of $£ 22.10 \mathrm{~s} .11 \mathrm{~d}$. ?
22. If $\frac{7}{15}$ of one guinea be taken from $\frac{3}{12}$ of $\frac{5}{9}$ of $£ 5$, what fraction of $£ 3$. $9 s$. will remain?
23. Add together $\frac{4}{15}$ of $£ 1, \frac{5}{8}$ of 1 s., $\frac{5}{28}$ of 1 guinea, and $\frac{3}{5}$ of £1. 6s. $8 d$.
24. Find the value of $\frac{5}{6}$ of half-a-guinea $+\frac{7}{15}$ of balf-a-crown $+\frac{7}{8}$ of a florin $-\frac{3}{4}$ of $6 s .8 d$.
25. The net profits of a business for a quarter of a year are £582. 14s. 11d. Of this sum the senior partner takes $\frac{7}{12}$, and the junior partner the remainder; but the latter has to pay $\frac{3}{19}$ of his share to an assistant. How much will the assistant receive a.t this rate per annum?
26. A, B, C, and D are partners in a business ; A takes $\frac{4}{9}$ of the profits, B takes $\frac{11}{45}$, and C takes $\frac{4}{15}$. There remains £202. 12s. $2 d$. for D. What were the total profits?
27. The total area of three farms is 1768 acres. If the areas of the two smaller farms are respectively $\frac{3}{5}$ and $\frac{2}{3}$ that of the largest, find the acreage of each.
28. Of the annual profits of a firm the first partner takes $\frac{1}{3}$, and the second $\frac{1}{4}$, the third $\frac{2}{5}$ of the remainder. If $£ 1025$. $5 s$. is left to carry forward to next year's account, what are the total profits?
29. A company regularly adds to its reserve fund in such a way that in each year the fund is $\frac{5}{4}$ of its amount in the preceding year. If it stood at $£ 3276.16 s$. in 1890 , what was its amount in 1893 ? And if it reached $£ 19,531.5 s$. in 1898, how did it stand in 1895 ?
*30. Add together $\frac{5}{9}$ of a guinea, $\frac{17}{20}$ of half-a-crown, $1 \frac{7}{36}$ of a shilling, and $\frac{1}{6}$ of a penny ; and reduce the sum to the fraction of one pound.
*31. A man pays one-tenth of his income in rates and taxes, and one-twelfth in insurances; he has left £492. 13s. 1 d . What is his income?
*32. A man pays away half his money to A, a third of what he has left to B, and a fifth part of what he still has left to C. If after these payments he has 12 s .8 d . left, how much had he at first?
*33. Find the rent of an estate whereof $\frac{5}{12}$ is let at $£ 2.3 s .0 d$. an acre, and the remainder, consisting of 20 ac. 3 r. 12 p., at £1. $16 \mathrm{rs} .8 d$. an acre.
*34. A warehouse of five storeys is let in flats. Each flat (except the top one) lets for $\frac{3}{4}$ of the rent charged for all the flats above it, and the rent of the whole warehouse is $£ 2401$. What is the rent of the middle flat?

Sixth Week. Decimals. Prinary Rules.

Note on Approximate Results and Contracted Multiplication and Division. A quantity is said to be expressed as a decimal correct to three places when its value is given as nearly as it is possible to give it if we use only three decimal figures.

For instance $\frac{f}{17}=352941 \ldots$, from which it is seen that the value of $\frac{6}{17}$ lies between 352 and 353 .

Now 352 is too small by more than 0009 , while 353 is too great by less than 0001 .

Thus 353 is the nearer value; and we say that $\frac{6}{17}=353$ correct to three places of decimals.

Example. Express $\frac{4}{19}+\frac{6}{17}+\frac{5}{13}$ as a decimal correct to four places.

$$
\begin{array}{l|l}
\frac{4}{19}=\cdot 2105 & 26 \ldots \\
\frac{6}{17}=.3529 & 41 \ldots \\
\frac{5}{13}=\frac{.3846}{.9480} & \frac{15 \ldots}{8}=\cdot 9481 \text { correct to } 4 \text { places. }
\end{array}
$$

Here we write down the first six figures of each decimal, adding in the usual manner. The sixth figure of the sum is not written down; it would probably be wrong for want of a "carrying " figure. The fifth figure is retained in order to correct the fourth.

Notice that this result correct to one decimal place is $\mathbf{9}$;
", ", ", two \quad ", places is 95 ;

Contracted Multiplication.

The student is strongly recommended to master contracted methods of Multiplication and Division of decimals. These are of great practical utility, since they enable us to obtain without unnecessary labour products and quotients true to any assigned number of decimal places.

With a view to facilitating contracted multiplication, ordinary multiplication should be arranged as in the following example.

Example. Multiply $3 \cdot 6804$ by $25 \cdot 13$.
Arrange the decimals one under the other, so that the decimal points may be in the same column.

Begin the multiplication with the left-hand figure of the multiplier, that is, with the 2 in the tens place;

$3 \cdot 6804$
$25 \cdot 13$
$73 \cdot 608$
$18 \cdot 4020$
$\cdot 36804$
$\cdot 110412$
$92 \cdot 488452$

We will now examine how this work might be abridged, if we needed a result true only to two decimal places.

As the result is to be true to two places of decimals, it is necessary at each stage to retain three decimal figures. We give below the full and contracted work for comparison, that the student may see what figures are superfluous, and how they may be discarded.

Full Wo	orimg.	Contracted	Workina.
$3 \cdot 68$	04	3.6,8	. 04
$25 \cdot 13$		$25 \cdot 13$	
73.60	8	$73 \cdot 60$	8
18.40	20	18.40	2
-36	804	$\cdot 36$	8
$\cdot 11$	0412	$\cdot 11$	0
92.48	8452	92.48	8

On comparison it will be seen that in the full working none of the figures printed in italics are needed; we may therefore proceed as follows:

Draw a vertical line after the second decimal figures; and begin, as before, by multiplying by the 2 (i.e. by 20), ranging the result accordingly one place to the left.

At the next stage the work is contracted by marking off and rejecting the last figure (i.e. 4) on the right of the multiplicand, before multiplying the figures that remain by the next figure (i.e. 5) of the multiplier. We must, however, carry 2 to the first place, as we should have done if the figure 4 had not been rejected.

Again, mark off the next figure 0 on the right of the multiplicand, and multiply the figures that remain by the next figure 1 of the multiplier. Continue this process till all the figures in the multiplicand are marked off, or all the figures in the multiplier are exhausted. Then, adding, we have $92 \cdot 48 \mid 8$; which corrected to two decimal places, gives $92 \cdot 49$.

Note. If there had been more than four decimal figures in the multiplicand, it will be seen that, in the above instance, those beyond the fourth might have been removed, as not affecting that part of the work which is to be retained.

For instance, if asked to multiply $3 \cdot 6804182$ by $25 \cdot 13$ true to two decimal places, we should begin by erasing the last three figures, 182.

We proceed to work out two more examples.
Examples. Multiply
(1) $3 \cdot 260428103$ by $501 \cdot 0206$ correct to 3 decimal places.
(2) $106 \cdot 391684$ by 028563 correct to 3 decimal places.

Required product $=1633.542$.

$1,06.3 .91$	$684 \ldots$
0298	563
2.127	8
.851	1
053	2
.006	4
.000	3
3.038	$\frac{8}{8}$

Required product $=3.039$.

Note. If the number of partial products to be added is large, two figures should be retained to the right of the vertical line. One figure is, however, usually sufficient.

Contracted Division.

Definition. The figures of a number or decimal, other than 0 's standing at the beginning or end, are called significant figures.

For example, of the numbers $20708,2070800,20 \cdot 708$, and $\cdot 00020708$, the significant figures in each case are $2,0,7,0,8$.

We shall now show by examples how the work of long division may be contracted when only an approximate result is required.

Example 1. Divide $79 \cdot 43806245$ by $3 \cdot 206402$, giving only the first two decimal figures of the quotient.

First determine by inspection how many integral figures there will be in the quotient. In this case there will clearly be two integral figures. And as two decimal figures are required, it follows that we have to find the first four significant figures of the quotient.

We give below (on the left) the full division, printing in italics all the figures that would be superfluous, if four figures only are required in the quotient. On the right we give the contracted working for comparison. In each case the decimal points are, omitted.

Full Working.

3206402) 79438	$\left\lvert\, \begin{aligned} & 06245(2477 \\ & 04 \end{aligned}\right.$
15310	022
12825	608
2484	4144
2244	4814
239	93305
224	44814
15	48491

Contracted Working.
$32,0,64) 79438$
$\frac{64128}{15310}$
$\frac{12826}{2484}$
$\frac{2244}{240}$
$\frac{224}{16}$$|(2477$

To perform the contracted working we retain in the divisor five figures, that is to say, one more than the number of significant figures required in the quotient : and in the dividend we retain as many figures as are needed to take the first step in the division, in this case also five.

We then proceed with the division in the ordinary way, except that at each stage, instead of bringing down a new figure from the dividend, we mark off and reject a figure from the right of the divisor, taking care, however, on multiplying, to make use of the figure last marked off for the purpose of obtaining a carrying number.

Thus we obtain as the quotient the figures 2477: but since it has been already determined that there will be two integral figures, the required result is $24 \cdot 77$.

Example 2. Divide 02628947597 by 3.0685 , the result to be given to eight decimal figures.
$30,6,5,5,00) 26289475$ (856753
$\frac{24548000}{1741475}$
$\frac{1534250}{207225}$
$\frac{184110}{23115}$
$\frac{21479}{1636}$
$\frac{1534}{102}$
92

Here $0262 \ldots$ is to be divided by a quantity intermediate between 3 and 4 ; therefore there will be two 0 's in the quotient before the first significant figure. Hence to make up the required eight places of decimals, we have to find six significant figures.

This makes it necessary to retain seven figures in the divisor, which is done in this case by adding two 0 's. It will be noticed that the first step in the division requires eight significant figures in the dividend.
The decimal points as before are omitted in the numerical work.
Thus the required result is ${ }^{\circ} 00856753$.

Examples VI.

1. What is meant by a decimal fraction? e.g., explain the meaning of $207 \cdot 30206$. Write down the following fractions in a decimal form :

$$
\frac{27}{10}, \frac{27}{100}, \frac{27}{100} 000, \frac{207}{1000}, \frac{2007}{100} .
$$

What fractions (in their lowest terms) are equivalent to the following decimals?
2. 04 .
3. $\cdot 028$.
4. $2 \cdot 015$.
5. $\cdot 00375$.
6. $\quad 7625$.
7. $\cdot 001375$.
8. 00009375.
9. 078125.

Convert the following fractions into equivalent decimals :
10. $\frac{3}{40 \pi}$.
11. $2 \frac{5}{8}$.
12. $\frac{29}{5000}$.
13. $\frac{49}{800}$.
14. $\frac{3}{192}$.
15. $\frac{1}{64} 0$.
16. $\frac{742}{87}$.
17. $\frac{7}{256}$.

Find (by decimals) the value of the following :
18. $\cdot 1+\cdot 006+\frac{4}{5}+\frac{3}{8}+\frac{1}{10000}$.
19. $53 \frac{1}{2}+36 \cdot 875+4 \frac{5}{8}+\frac{2}{3}$ of $7 \frac{1}{2}$.
20. $13 \frac{1}{4}+1 \frac{2}{5}+8 \frac{3}{1 \frac{3}{5}}-\left(4 \frac{1}{8}+\cdot 549\right)$.
21. What decimal must be added to the sum of $0023,2 \cdot 36,250$, and 527 to give a total of 253 ?
22. Find the difference between $203 \cdot 66519$ and the sum of $181.5276,10 \cdot 0085, \cdot 16709$.
23. From the sum of $\cdot 90807,6 \cdot 05, \cdot 0043,22$, and $\cdot 00068$ take the difference between $30 \cdot 101$ and $1 \cdot 14795$.

State and explain a rule for multiplying one decimal by another ; and find the value of

24.	$41 \cdot 2 \times 3.9$.	25.	$\cdot 011 \times 1100$.
26.	$\cdot 015 \times \cdot 273$.	27.	$\cdot 83 \times \cdot 073$.
28.	$200 \cdot 002 \times \cdot 303$.	29.	$\cdot 0000152 \times 87.5$.
30.	$28.395 \times \cdot 00114$.	31.	$\cdot 04705 \times 24 \cdot 0604$.
32.	$[17 \cdot 453]^{2}$.	33.	$3-(1 \cdot 732)^{2}$.

State and explain a rule for dividing one decimal by another ; and find the value of
34. $3 \cdot 3252 \div 3 \cdot 26$.
35. $3 \cdot 24 \div 11 \cdot 25$.
36. $42 \cdot 5 \div \cdot 017$.
37. $157 \cdot 311 \div 3405$.
38. $128 \cdot 36526 \div 3 \cdot 204$.
39. $13.5 \div \cdot 001125$.
40. $\cdot 045375 \div \cdot 000015$.
41. $\cdot 00371 \div 1 \cdot 28$.
42. Find the continued product of $2.05, \cdot 0024$ and 250 ; by what decimal must the result be multiplied to give $\cdot 06765$?

Simplify the following (without converting decimals into vulgar fractions) :
43. $\frac{6 \cdot 1275 \times \cdot 032}{\cdot 00024}$.
44. $\frac{-416 \times \cdot 025}{3.25}$.
45. $\quad \frac{.004 \times 32.4}{6.4 \times \cdot 0045}$.
46. $\frac{.00281 \times \cdot 0625}{1.405 \times .00125}$.
47. $\frac{2 \cdot 25}{.25}+\frac{2}{1 \cdot 25}+\frac{\cdot 09}{.00625}$.
48. $\frac{\cdot 20705}{\cdot 0101}+\frac{8 \cdot 32}{512}+\frac{1 \cdot 326}{\cdot 408}$.
49. $\frac{\cdot 02-\cdot 002+\cdot 302}{(\cdot 016)^{2}}$.
50. $\frac{25-\cdot 0025+3 \cdot 82 \div \cdot 25}{805 \cdot 5+\cdot 05}$.
(Contracted Multiplication and Division.)
51. Multiply $\cdot 0914$ by $32 \cdot 56$, giving the product correct to three places of decimals.
52. Multiply 0731 by 163 , giving the product true to the nearest thousandth.
53. Multiply 59.6159 by 3.0807 , giving the result correct to four places of decimals.
54. Multiply 3.73205 by ${ }^{2} 26795$, giving the product correct to five places of decimals.
55. Show by contracted multiplication that the square of 1.73205 differs from 3 by less than one hundred-thousandth of unity.
56. Prove that the product of $1 \cdot 231056$ and 81231056 differs from unity by less than 000002 .
57. Divide $43 \cdot 7246$ by $10 \cdot 84589$, giving the quotient true to three places of decimals.
58. Divide $\cdot 0492653$ by $\cdot 020476$, giving the quotient true to four significant figures.
59. Find the value of (i.) $2 \div 1 \cdot 41421$, (ii.) $1 \div 3 \cdot 14159$, in each case to five significant figures.

60 . Find the value of
(i.) $\frac{.000725 \times 31 \cdot 2501}{\cdot 0625}$,
(ii.) $\frac{236.405 \times 0026054}{4.6082}$,
in each case to four places of decimals.

(Miscellaneous Examples.)

Reduce to their simplest forms :
*61. $\frac{\frac{3}{4} \text { of } 0.0603}{\frac{5}{4} \text { of } 0.00594}$. $\quad * 62 . \frac{\frac{3}{11} \times 25.15}{4 \frac{6}{11} \times 0.4}$
*63. $(0.1 \times 0.01 \div 0.0002)-\left(0.6375 \times \frac{1}{1.7} \div 0.125\right)$.
*64. $\frac{0.2 \times 0.3}{0.00012} \div\left\{\frac{5 \cdot 719}{1.9}+0.3 \times 1.2 \times 9\right\}$.
*65. $\quad \frac{0.002 \times 36.25}{0.029}-\frac{102.85 \times 0.04}{1.7}$.
*66. $(0.0057 \times 2.09 \div 0.361)-(0.00165 \times 0.077 \div 0.0105)$
*67. $\frac{1.61 \times 0.0209}{0.00253}-\frac{2.03 \times 0.336}{32.48}$.
*68. $\quad(18 \cdot 7 \times 0.0039 \div 2.21)-(0.441 \times 0.0091 \div 1.911)$.
*69. $(7.35 \times 0.0143 \div 15.015)-(0.152 \times 0.033 \div 2.09)$.
*70. $(21.7 \times 0.087 \div 2.03)+(102.01 \times 0.319 \div 2.639)$.

Seventh Week. Recurring Decimals.

Examples VII.

1. Before converting a vulgar fraction into a decimal, what means is there of determining whether the decimal will terminate or recur?

Will the decimals equivalent to the following fractions terminate or recur?
2. $\frac{19}{160}$
3. $\frac{15}{64} \frac{7}{0}$.
4. $\frac{293}{960}$.
5. $\frac{1001}{625}$.
6. $\frac{563}{22400}$.
7. $\frac{1111}{13750}$.

Convert the following fractions into decimal form :
8. $\frac{5}{9}$.
9. $\frac{6}{55}$.
10. $\frac{1}{33}$.
11. $\frac{7}{240}$.
12. $\frac{259}{1100}$.
13. $\frac{14}{4} \frac{9}{9}$.
14. $\frac{5}{28}$.
15. $\frac{1009}{1998}$.
16. $10 \frac{10}{999}$.
17. $\frac{47}{468}$.
18. Prove that $\cdot \dot{9}=1$; and find terminating decimals equivalent to the following :
(i.) $9 \cdot \dot{9}$. (ii.) $34 \dot{9}$. (iii.) $7 \cdot 490 \dot{9}$. (iv.) 00909.
19. Explain, by taking an example, the reason for the rule for converting a recurring decimal into a vulgar fraction : e.g. shew by strict reasoning that $\cdot 72581=\frac{72581-72}{99900}$.

Convert the following recurring decimals into equivalent vulgar fractions:
20. oi i.
21. 327°.
22. - $123 \dot{7} 7$.
23. -0i32.
24. $1 \cdot 046 ீ 29$.
25. -484i32.
26. $55 \cdot 00 \mathrm{i} 8$.
27. ${ }^{4} 2857 \mathrm{i}$.
28. 05714285 .

Find the lowest multipliers which will convert the following recurring decimals into terminating decimals :
29. 0340 ǵ.
30. ${ }^{2} \mathbf{2} 28571$.
31. - $115384 \hat{6}$.

State the rule for the exact addition (or subtraction) of recurring decimals; and add together the following, giving the result true to six places of decimals :
32. $32 \cdot 1 \dot{4},-3214,3 \cdot 214$, and $321 \cdot \dot{4}$.
33. $101 \cdot 30$ í , $\cdot 02 \dot{8} 3 \dot{2}, 45 \cdot 273,4 \cdot 3$, and $\cdot 42 \dot{6} 80$ i $^{\text {. }}$

Add the following, giving the exact result as a recurring decimal:
34. $\cdot 14, \cdot 011 \dot{6}$, and $32 \dot{2} \dot{5}$.
35. $43 \dot{4} \dot{8}$, $\cdot 101$, and $\cdot \dot{4} 55 \dot{4}$
36. $\dot{3} 02 \dot{5}, 3 \cdot 02 \dot{5}, 302 \cdot 5$, and $30 \cdot 2 \cdot 5$.
37. $\cdot 101, \cdot 000126 \dot{6}, \cdot 020$, and $\cdot 003$.

Simplify the following :
38. $\cdot 3025-3025$;
39. $\cdot 302 \dot{5}-\cdot 00003025$;
40. $8 \cdot 27+8 \cdot 2 \dot{7}+8 \cdot 2 \dot{2}-24 \cdot 000 \dot{4}$;
41. $\cdot \dot{4} 2857 \mathrm{i}-\stackrel{2}{85714}$.
and explain the last result by means of vulgar fractions.
Multiply
42. $\cdot 173$ by 100 .
43. $\cdot 0 i 3685^{\circ}$ by 1000 .
44. $4 \dot{3}$ by 3 .
45. $\cdot 036$ by 11 .
46. $\cdot 15 \dot{6}$ by 13 .
47. $\cdot \dot{8} 57142 \dot{2}$ by $\cdot 7$.
48. $\cdot 4 \dot{4} 6153 \dot{8}$ by ${ }^{6} 65$.
49. 0 í 4 by 9.9 .

Divide
50. 625 by 9 .
51. $9 \cdot 8$ by 11 .
52. 406.3406 by 1000 .
53. 3.68386 by 36 .
54. $2 \cdot 610 \dot{4} 6 \dot{2}$ by $5 \cdot 2$.
55. $2 \cdot 3 \dot{4} 5$ by $7 \cdot 74$.
56. $1 \cdot 235$ by 32 .
57. $26 \cdot 3388$ by $14 \cdot 14$.

Simplify the following, giving the results as decimals :
58. $\quad-2 \dot{7} \times 916$.
59. $\quad 5 \dot{3} 0 \times \times \cdot \dot{6}$.
60. $6060 \cdot 60 \times 01254$.
61. $4 \cdot 608 ̊ i \times 35567$.
62. $\quad 03 \dot{6} \div \cdot 0 \dot{3}$.
63. $38 \div 12 \cdot 4$.
64. $1 \div \cdot(002 \dot{5}$,
65. $\cdot 49 \mathfrak{9} 25^{\circ} \div \cdot{ }^{\circ} 03$.
66. $\frac{4 \times 1 \cdot 1 \dot{3} \dot{6} 6}{4 \cdot \dot{5} \dot{4}}$.
67. $\frac{4.997}{-398 \dot{4} \times 2.09}$.
68. $\frac{1 \cdot 10 \dot{0}+2 \cdot 0.50}{3 \cdot 16}$.
E. C.

Eighth Week. Decimals of Compound Quentities.

Note on Approximations. It should be carefully observed that a sum of money expressed in £s. and the decimal of a £., if correct to the third decimal place, will yield a result which differs from the true value by less than one farthing.
If, for instance, we are asked to find the value of $£ 3.6818292 \ldots$ to the nearest farthing, we may begin by at once discarding all decimal figures beyond the third (using the fourth, if necessary, to correct the third): for $£ 3.682$ will give the same result (viz, $£ 3.13 s .7 \frac{3}{4} d$.) as $£ 3 \cdot 6818292 .$. to within less than a farthing.

Note. The reason of this is evident when we remember that 1 farthing $=£_{\frac{1}{6} \bar{\sigma} \sigma}$, which is greater than $£_{\frac{1}{1000}}$ (or $£ \cdot 001$). If, then, the decimal of $£ 1$ is corrected to the third place (i.e. made true to the nearest $£ \cdot 001$) it cannot differ from the actual value by as much as $£_{\frac{1}{960}}$, or 1 farthing. The student will find it convenient to acquire one of the various devices (explained in any text-book of Arithmetic) by which a sum of money can be expressed at sight as the decimal of $£ 1$ correct to the third place; and also the converse process.

Example 1. Add .together $£ 17 \cdot 051 \dot{6}^{\circ}, £ 8 \cdot 197$, and $£ 12 \cdot 3105 \circ 8$, giving a result true to the nearest farthing.

17.051	$65 \ldots$
8.197	\ldots
12.310	$\frac{58 \ldots}{2}$

Here the addition (in decimals of £1) need only be performed correct to the third decimal place.

And $£ 37 \cdot 559=£ 37.11$ s. $2 \frac{1}{4} d$. (to the nearest farthing).
Example 2. Find to the nearest farthing the rent and taxes on $306 \cdot 0108$ acres at $£ 5.17 s$. $5 d$. an acre.

$\begin{array}{r} 5 \cdot 8,7,0 \\ 306 \cdot 01 \end{array}$	${ }_{5}^{8,3,3}$	
1761.249	9	£5. 17s. $5 d .=£ 5 \cdot 87083$,
35.225	0	and we have to multiply $5 \cdot 870833 .$.
58	7	by 306.0108 , retaining a result true
4	6	only to the third decimal place.
£1796538	2	

Now $£ 1796 \cdot 538=£ 1796.10 s .9 \mathrm{~d}$. (to the nearest farthing).
Similarly a weight expressed as the decimal of a ton, if correct to the fourth decimal place, will give a result true to the nearest lb. (since the number of lbs. in 1 ton is less than 10,000); and
for a like reason a length expressed as a decimal of a mile need only be carried to the fourth place to give a result true to the nearest foot.

Example. Find to the nearest $l b$. the value of 0165 of 8 tons 5 cwt. 37 lbs.

Now 8 tons 5 cwt. 37 lbs .

And $\cdot 1364$ ton $=2 \cdot 728 \mathrm{cwt} .=2 \mathrm{cwt} .82 \mathrm{lbs}$. (to the nearest lb.).

Examples VIII.

Reduce to pence :

1. 0375 of $£ 1 . \quad 2 . \quad 16875$ of $£ 1$.
2. $3 \cdot 4875$ of 5 s.
3. •13375 of £5.
4. Reduce (i.) 878125 of 1 ton to lbs.;
(ii.) 01875 of 1 mile to yards ;
(iii.) 4625 of 1 lb . Troy to dwt.

Find the value in pounds, shillings, and pence of
6. 6375 of $£ 1$.
7. $3 \cdot 88125$ of $£ 1$.
8. $4 \cdot 39375$ of $£ 1$.
9. $3 \cdot 15625$ of $£ 5$.
10. 0053125 of $£ 20$.
11. 980078125 of $£ 800$.

Express as the decimal of $£ 1$:
12. 17 s. $10 \frac{1}{2} d$.
13. £3. 15s. $4 \frac{1}{2} d$.
14. $11 s .3 \frac{3}{4} d$.
15. £4. $19 \mathrm{~s} .0 \frac{3}{4} d$.
16. Reduce (i.) £13. $4 s .9 \mathrm{~d}$. to the decimal of $£ 100$;
(ii.) $£ 16.13 s .9$ d. to the decimal of $£ 12$;
(iii.) $£ 10.3$ s. $10 \frac{1}{2} d$. to the decimal of $£ 8$.

Find the value in compound quantities of
17. $1 \cdot 475$ acres.
18. 28125 of a ton.
19. 895 of a day.
20. $1 \cdot 6425$ of 10 miles.
21. $\cdot 430625$ of 5 tons.
22. 6383 of 125 acres,
23. Express (i.) 3 cwt. 3 qrs. 14 lbs . as the decimal of 1 ton;
(ii.) 3 roods 13 poles as the decimal of 1 acre;
(iii.) 2 weeks 4 days 6 hrs . as the decimal of I year;
(iv.) 1 qr. 15 lbs .5 oz . to the decimal of 1 cwt .

Find the value of
24. $2 \cdot 125$ of $£ 3.4 s$.
25. $3 \cdot 625$ of $£ 4.16$ s.
26. $8 \cdot 24$ of £2. $2 s .6 d$.
28. "2272 of £14. 6s. $5 \frac{1}{2} d$.
30. 3.875 of 11 ac. 2 r. 8 p .
27. $5 \cdot 84$ of £2. 3s. 9 d .
29. - 8125 of 2 tons 4 cwt .
32. Multiply (i.) £1. $3 s .4 d$. by $3 \cdot 15$;
(ii.) £2. $13 s .4 d$. by $1 \cdot 30625$.
33. Divide (i.) £10. 2s. $6 d$. by 4.05 ;
(ii.) £29. $12 s .6 d$. by $2 \cdot 844$.
34. By what decimal must £1. 6s. 8d. be multiplied to give £2. 18s. $4 d$. .? And by what decimal must 9 cwt. 1 qr. be divided to give 1 ton 5 cwt.?

Find the value of
35. $\quad 641 \dot{6}$ of $£ 1 . \quad 36 . \quad 2 \cdot 18 \dot{3}$ of $£ 1$. 37 . $73541 \dot{6}$ of $£ 100$.
38. $\quad 341 \dot{6}$ of £5. $\quad 39.4 \cdot 358 \dot{3}$ of $£ 7 . \quad 40 . \quad \cdot 8 \dot{3}$ of $£ 2.6$.s.
41. $2 \cdot 30 \dot{9}$ of $£ 1.7 s .6 d$. 42. $3 \cdot 0.69 \dot{3}$ of $8 s .5 d$.
43. $\cdot 6366 \mathfrak{6} \dot{3}$ of $£ 45.16 s .8 d$. 44. -226855 i of a cubic yard.
45. $\mathbf{i} 4285 \dot{7}$ of one cwt. 46. $3 \cdot \dot{6}$ of $\cdot \dot{9} 4 \dot{5}$ of $\cdot \dot{4} 2857 \mathrm{i}$ of $18 s .6 d$.
47. Express as decimals of $£ 1$:
(i.) $1 s .5 \frac{1}{2} d$. ;
(ii.) £2. 11 s. $3 \frac{1}{2} d$.;
(iii.) £17. 16s. $8 \frac{3}{4} d$.

Reduce
48. $4 s .2 \frac{1}{2} d$. to the decimal of $5 s$.
49. 3 lbs .6 oz . to the decimal of 4 cwt . 2 lbs .

50 . £19. $6 \mathrm{~s} .8 d$. to the decimal of $£ 6$.
51. $\cdot 0 \check{6} 6$ of a sq. pole to the decimal of an acre.
52. 0216 of $£ 3.8 s .4 d$. to the decimal of $£ 123$.
53. 3 yds .2 ft .2 in . to the decimal of $2 \frac{1}{2}$ poles.
54. I ac. 3 r. 8 p. to the decimal of 4 ac .3 r .32 p
55. 2 oz .13 dwt . to the decimal of 1 lb . (Troy).
56. 028 of $8 s .7 \frac{1}{2} d$. to the decimal of $11 s .6 d$.
57. 0125 of 4 tons 19 cwt. 6 lbs . to the decimal of 3 cwt. 1 qr . 11 lbs.
58. - 15900 of one ton to the decimal of 5 cwt ,

Add together
59.0015 of half-a-sovereign, $2 \cdot 0615$ of half-a-guinea, and $1 \cdot 3357$ of half-a-crown.
60. 035 of $£ 5, \cdot{ }^{5}$ of a guinea, and $\cdot 5 \dot{3}$ of $7 s .6 d$.
61. 35 of one ton, 39 of one cwt., and $\cdot 44$ of one qr.
62. $3 . \%$ of half-a-crown, $4 \cdot \dot{4}$ of a guinea, and $1 \cdot 0 \dot{4} \dot{4}$ of $£ 22$.
63. Subtract $\frac{15}{1} \frac{5}{6}$ of $£ 16$. 2s. $4 d$. from 0125 of $£ 1626$. 15%; and find by what decimal the result must be multiplied to produce £1. 6s. $1 \frac{1}{2} d$.

Subtract
64. $\quad \dot{3} 7 \dot{8}$ of $1 s .6 \frac{1}{2} d$. from $\cdot 3 \dot{7} \dot{8}$ of $2 s .9 d$.
65. the sum of 3125 of 6 cwt., and 032 of 3 cwt. 2 qrs. 14 lbs . 4 oz . from 2 cwt .
66. $6 \dot{2} \dot{6}$ of $£ 1.4 s .9 \mathrm{~d}$. from the sum of 2.3125 of $£ 12$, and 4.825. of 5 s .

Find the value to the nearest farthing of
67. 7906 of $£ 1 . \quad 68 . \quad 2 \cdot 36842$ of $£ 1$.
69. $3 \cdot 701056$ of $£ 4$. 15 \%.
71. •0914 of £32. 11s. $2 \frac{1}{2} d$.
70. $1 \cdot 02$ of $£ 3$. $5 s .2 \frac{1}{2} d$.
73. £8. 6 s. $11 \frac{1}{4} d . \times 100 \%$.
72. $2 \cdot 0172$ of $£ 500$. 3 s. $5 \frac{1}{2} d$.
74. £384. 7s. 5d. × •008351.
75. $£ \cdot 561023 \times 597.001$. 76. £60. 12s. $0 \frac{1}{4} d \div 20 \cdot 0002$.
77. £191. 18.s. $5 \frac{3}{4} d . \div 7 \cdot 0071$. 78. £10. 16s. $11 d . \div{ }^{\circ} 248005$.

Find the value of
79. - 123725 of one ton to the nearest ounce.
80. $\cdot 97247$ of one acre to the nearest square yard.
81. • 1225 of 1 mi .6 fur. to the nearest foot.
82. ' $\dot{3}$ of $\cdot \dot{6} \dot{3}$ of $£ 6.2 s .3 d$. to the nearest farthing.
83. Find to the nearest inch the difference between 437 of 1 fur. 3 p. and 097 of a mile.
84. Find to the nearest ounce the sum of 0237 of a ton and $\cdot 687$ of a quarter.
*85. What decimal is $2 \frac{1}{4} d$. of $7 s .6 d$. ? And what decimal of 1 cwt. is 64 lbs.?
*86. How many pounds are there in 0.70864 of a ton?
*87. Find the value of $0.02545454 \ldots$ of $£ 18.19 s .6 d$. ; and express the result as the decimal of £5. 10 s .0 d .
*88. Divide £47. 17 s. $6 \frac{1}{4} d$. by $0.3727272 \ldots$; and find what decimal of the quotient is $£ 143$.
*89. A sovereign consists of 22 parts by weight of pure gold to 2 parts of alloy, and it weighs 123.274 grains. Neglecting the value of the alloy, find (to the nearest penny) the value of pure gold per ounce Troy (480 grains).

Ninth Week. Miscellaneous Examples on Fractions and Decimals.

Examples IX.

Express as decimals :

1. $\cdot 0003+\frac{817}{3125}-\cdot 00847+\frac{361}{8} 0 \frac{1}{0}$.
2. $50 \frac{21}{2}+3 \frac{1}{160}+8 \frac{48}{100}+28 \frac{3}{3} \frac{32}{125}$.
3. Simplify $\frac{442}{2431}+\frac{2151}{788} \frac{2}{7}+\frac{2094}{38} 39$; and find what decimal must be multiplied by $\frac{1}{7}$ to give a result equal to the sum of $1 \frac{1}{830}$ and $\frac{1}{16731}$.
4. Reduce $\frac{£ 127.4 s .9 d .}{£ 933.1 s .6 d .}$ to its simplest form; and state what meanings may be assigned to this fraction.
5. Simplify $\frac{£ 4.13 s .6 d .}{£ 60.15 s .6 d .}+\frac{5 \text { tons } 2 \text { ewt. }}{16 \text { tons } 11 \text { cwt. } 2 \text { qrs. }}$.
6. Simplify $\frac{£ 1.18 s .6 d .}{1078 d .}+\frac{356 \grave{4} 1 \mathrm{cub} \text { ct } \mathrm{ft}}{1078 \mathrm{cub} . \mathrm{in} .}$.

Express as simple decimals :
7. $\frac{\cdot 161}{1 \cdot 15}+\frac{\cdot 00576}{\cdot 12}+\frac{\cdot 250625}{2 \cdot 5}$.
8. $\frac{1 \cdot 8}{6 \times 2 \frac{2}{5}}+\frac{\cdot \dot{6}}{\cdot 75}-\frac{36 \cdot 625+\frac{3}{8}}{.024 \text { of } 3000}$.
9. $\frac{875 \times \cdot \cdot \dot{7} 0}{\cdot 125+\cdot 125 \dot{6} 7 \dot{5}}+\frac{3}{53}$.
10. Express $\frac{11}{17}$ of $1 \cdot 13$ of 2 cwt .5 lbs .8 oz . as the decimal of one ton.
11. A man by selling a horse for $£ 12$ more than he gave for it realises a profit equal to $\frac{2}{7}$ of the cost price. What was the cost price ?

Find the value of
12. $\frac{1}{1 \frac{7}{20}}$ of $\cdot 03 \dot{4} \dot{8}$ of $18 s .63 d_{4}+\frac{1}{7}$ of $\cdot 2 \dot{3}$ of $1 s .3 d$.
13. $\dot{6} \dot{5}$ of $4 \cdot \mathrm{i}$ of $\frac{3 \frac{2}{13}}{13}$ of $2 \cdot \dot{4} 3 \dot{2}$ of 13 s .6 d .
14. $\cdot 3375$ of $£ 1+{ }^{2} 16$ of $£ 15+1 \cdot 025$ of 6 s .8 d .
15. A battalion lost $\frac{1}{30}$ of its numbers at its first engagement, $\frac{7}{2^{9}}$ of the remainder at the second, and $\frac{3}{11}$ of the remainder at the third. Then 512 men were left fit for duty. What was the original strength of the battalion?

Simplify
16. $\frac{3}{2+\frac{2}{3+\frac{2}{3+\frac{2}{3}}}} \div \cdot 00039$.
17. $\frac{2}{3+\frac{.2}{3+\frac{\cdot 02}{3+\cdot 002}}}$.
18. A warehouse consists of seven floors, and the rent of each floor is 875 times that of the floor below it. If the rent of the middle floor is $£ 120$. $1 s$., find that of the lowest.
19. Reduce 055 of $£ 2.17 s .11 d$. to the decimal of the difference between $\frac{2}{3}$ of $£ 5.6 s .9 d$. and $\frac{3}{5}$ of $£ 1.2 s$. $1 d$.
20. A piece of copper weighing 3 lbs .2 oz . is dropped gently into a vessel full of water. Find correct to the hundredth part of a cubic inch the volume of the water displaced, assuming that a cubic foot of water weighs 1000 oz ., and that copper is 8.915 times as heavy as water.

Find, correct to four places of decimals, the values of the following series :
21. $1+\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\frac{1}{5^{4}}+\ldots$.
22. $\frac{1}{2}+\frac{1}{2 \times 3}+\frac{1}{2 \times 3 \times 4}+\frac{1}{2 \times 3 \times 4 \times 5}+.$.

Find, correct to six places of decimals,
23. $\frac{1}{1 \times 9}+\frac{1}{3 \times 9^{3}}+\frac{1}{5 \times 9^{5}}+\frac{1}{7 \times 9^{7}}+\ldots$.
24. $\frac{1}{2}+\frac{1}{2 \times 4}+\frac{1}{2 \times 4 \times 6}+\frac{1}{2 \times 4 \times 6 \times 8}+\ldots$.
*25. Reduce to its simplest form

$$
\frac{3 \frac{4}{11} \times\left(1 \frac{2}{9} \text { of } 1.08\right)}{1 \frac{11}{1} \frac{1}{3} \times\left(0.6+\frac{2}{9}\right)}
$$

*26. Find the sum of 2.25 of $2 s .1 d$. and 0.003 of $£ 6.3 s .9 d$. ; and express the result as the fraction of $£ 2.13 s .6 d$.
*27. Subtract 0.0625 of $£ 113$. 16 s . 8 d . from $\frac{23}{24}$ of $£ 50.5$ s. 6 d .; and find the number by which the result must be multiplied to produce $£ 985.11 s .6 d$.
*28. An imperial gallon was declared by Act of Parliament in 1760 to contain 277.274 cubic inches; a Winchester bushel contains $2150 \cdot 42$ cubic inches. How many Winchester bushels are equal to 100 imperial bushels ?

Tenth Week. Practice.

Notes and Hints for Solution. The method of Simple Practice is too familiar to need illustration here. We will work out one question in Compound Practice by the ordinary rule, and then give two examples to remind the student that in more complicated cases, where only an approximate result (true to the nearest penny or farthing) is required, a decimal process may often be employed with advantage.

Example 1. Find the value of 6 oz .15 dwts. 15 grs . of standard gold at $£ 3$. 17s. $10 \frac{1}{2} d$. per ounce.
$10 \mathrm{dwts} .=\frac{1}{2}$ of 1 oz .
$5 \mathrm{dwts} .=\frac{1}{2}$ of 10 dwts . $12 \mathrm{grs} .=\frac{1}{10}$ of 5 dwts .
3 grs . $=\frac{1}{4}$ of 12 grs .

Example 2. Find, to the nearest farthing, the value of a crop on 57 ac. 0 ro. 4 p. 18 sq. yds. at $£ 2.12$ s. $4 d$. an acre.
[The student will remember that a result expressed as a decimal of a £., if correct to the third place, will yield an answer true to the nearest farthing.]

Now 57 ac. 0 ro. 4 p. 18 sq. yds. $=57.0287 \ldots$ acres.
Required 57.0287 acres at $£ 2.12 \mathrm{~s} .4 \mathrm{~d}$. an acre.

$10 \mathrm{~s} .=£ \frac{1}{2}$	$\begin{gathered} £ 57 \cdot 0287 \\ 2 \end{gathered}$	18.4 sq. yds.	
	114.057 4	$121\left\{\frac{11}{11}\right\}$	72.
	28.5143		6.54545..
10s. $= \pm \overline{2}$	28.514	40	$4 \cdot 59504$.
$2 s .=\frac{1}{5}$ of $10 s$	$5 \cdot 7029$	4	0.11487.
$4 d .=\frac{1}{6}$ of $2 s$.	-950 5		.02871..
	£149:225		

Example 3. Find the value of 40 tons 2 cwt. 12 lbs . at £17. 5s. 7 d . per ton to the nearest farthing.
£17. 5 s. $7 \mathrm{~d} .=£ 17 \times 279166 \ldots$.
40 tons 2 cwt. $12 \mathrm{lbs} .=40 \cdot 10535 \ldots$ tons.

Examples X.

(Simple Practice.)
Find the cost of

1. 127 things at $£ 9.17$ s. $6 d$. each.
2. 3451 things at $£ 2.18$ s. $9 d$. each.
3. 6050 things at £2. 7s. 10 d . each.
4. 431 things at $£ 5.17 s$. $11 \frac{1}{2} d$. each.
5. 735 things at $16 s .10 \frac{1}{2} d$. each.
6. What sum will be required to enable a company to declare a dividend of $7 s$. $10 \frac{1}{2} d$. per share on 2135 shares?
7. If a bankrupt pays $14 s .7 \frac{1}{4} d$. in the pound, how much will a creditor receive to whom he owes $£ 2510$?
8. Find the dividend on $£ 1596$ at $15 s .9 \frac{3}{4} d$. in the pound.
9. Find the total weight of 336 truck-loads of 3 tons 4 cwt. 1 qr. 17 lbs . each.
10. What is the total area of 1536 allotments of land, each containing 4 acres 2 r. 36 p.?

(Compound Practice.)

Find by Practice the cost of
11. 2 cwt. 2 qrs. 17 lbs . at $£ 1.10$ s. $4 d$. per cwt.
12. 12 cwt. 3 qrs. 16 lbs . at $£ 2.17 \mathrm{~s} .2 d$. per ton.
13. 5 lbs .10 oz .17 dwt . of an alloy of gold at £2. $2 s .6 d$. per ounce.
14. 113 ac. 2 r. $13 \frac{1}{3}$ p. of land at $£ 56$. 5 s. $0 d$. per acre.
15. 17 miles 7 fur. 60 yds. of iron rails at $£ 17$. 12s. per mile.
16. If a bankrupt pays 12 s .10 d . in the pound, how much will he pay to a creditor to whom he owes $£ 754$. 10 s.
17. Find the dividend on
(i.) $£ 4287.17 \mathrm{~s} .6 \mathrm{~d}$. at 14 s .4 d . in the pound;
(ii.) $£ 2073.6 \mathrm{~s} .3 \mathrm{~d}$. at 11 s .8 d . in the pound.
18. Find the value of a nugget of gold weighing 3 lbs .11 oz . 8 dwts. 4 grs. at $£ 3.17 \mathrm{~s} .6 \mathrm{~d}$. per ounce.
19. Find the cost of making a road 47 miles 3 fur. 5 yds. long at £38. $2 s$. $8 d$. a mile.

(Approximations.)

20. Find to the nearest penny the value of 3 ac. $1 \mathrm{r} .3_{\frac{1}{4}} \mathrm{p}$. at $£ 110$ per acre.
21. Find to the nearest penny the value of $841 \frac{1}{4}$ cwt. at £21. 13s. $7 \frac{1}{4} d$. per cwt.
22. Find to the nearest farthing the dividend on
(i.) £1483. 17 s . at 8 s .1114 d. in the pound;
(ii.) $£ 1710.14 \mathrm{~s} .6 \mathrm{~d}$. at $13 \mathrm{~s} .4 \frac{1}{2} d$. in the pound.
23. Find to the nearest penny the rent of 315 ac .3 r .7 p . 11 sq. yds. at £1. 16s. 8d. per acre.
24. Find to the nearest penny the cost of 659 bales of cotton, each weighing $1 \mathrm{cwt} .1 \mathrm{qr} .21 \mathrm{lbs} .$, at $£ 2.3 s .1 \frac{1}{2} d$. per cwt.
25. Find to the nearest farthing the value of 9 tons 4 cwt .3 qrs . 21 lbs. of material at £14. 15 s .9 d . per cwt.
*26. Find the value (to the nearest farthing) of 2 lbs .7 oz .15 dwt . 20 grs . of gold at $£ 46.14 \mathrm{~s} .6 \mathrm{~d}$. a pound.
*27. Find the value (to the nearest farthing) of 3 tons 17 cwts. 2 qrs. 8 lbs. at $£ 32.17 s .4 d$. a ton.
*28. Find (to the nearest farthing) the value of 3 lbs .4 oz .13 dwts . 19 grs. of gold at $£ 3.17 \mathrm{~s}$. $10 \frac{1}{2} d$. an ounce.
*29. Find the cost of 12 tons 2 cwts. 3 qrs. 11 lbs . of material at £17. 11s. 8d. per ton.
*30. Find the cost of 47 qrs. 4 bus. 2 pks. 1 gal. 3 qts. 1 pt. at £1. 17s. 4d. per bushel.

Eleventh Week. Ratio and Proportion.

Notes and Hints for Solution. The following examples illustrate typical questions to be solved by methods of ratio and proportion.

Example 1. Find the ratio which 7 days 3 hrs. 44 min. bears to 13 days 10 hrs .
The ratio which one quantity bears to another (of the same kind) is measured by the fraction that the first is of the second. This requires that the two quantities should be expressed in the same denomination.

Now 7 days 3 hrs .44 min . $=10304$ minutes;
13 days $10 \mathrm{hrs} . \quad=19320$ minutes ;
$\therefore \quad$ the required ratio $=\frac{10304}{19320}=\frac{1288 \times 8}{1288 \times 15}=\frac{8}{15}($ or $8: 15)$.
Example 2. What sum of money has to f11. 4s. the same ratio that 5 cwt. has to 1 ton 4 cwt.?

Here the given ratio $=\frac{5 \mathrm{cwt} .}{1 \text { ton } 4 \mathrm{cwt} .}=\frac{5}{24}$;
\therefore the required sum $=\frac{5}{24}$ of $£ 11.4 s .=£ 2.6 s .8 d$.
Example 3. If the carriage of 5 tons 2 cwt. of goods costs £2. 18s. $8 d$., what should be charged for carrying 7 tons 13 cwt. the same distance?

Here 5 tons 2 cwt . $=102 \mathrm{cwt}$; and 7 tons $13 \mathrm{cwt} .=153 \mathrm{cwt}$; and we may reason thus:

$$
\begin{array}{rrrrr}
& \text { To carry } 102 \text { cwt. costs } & £ 2.18 s .8 d . ; \\
\therefore & , & 1 \text { cwt. } & , & \frac{1}{1} \frac{1}{2} \text { of } £ 2.18 s .8 d . ; \\
\therefore & , & 153 \text { cwt. } & , & \frac{1}{1} \frac{53}{0} \text { of } £ 2.18 s .8 d . \\
& & & & \\
& =\frac{3}{2} \text { of } £ 2.18 s .8 d .=£ 4.8 s .
\end{array}
$$

After some practice the student may dispense with the middle step ; and, noticing that the required sum of money will be greater than $£ 2.18 \mathrm{~s} .8 d$. in the ratio of $153: 102$, he may multiply at once by the increasing ratio $\frac{153}{102}$ or $\frac{3}{2}$.

The work would then stand thus:
To carry 102 cwt. costs $£ 2.18$ s. $8 d$. ;

$$
\begin{aligned}
\therefore \quad \# \quad 153 \mathrm{cwt.} \quad, & £ 2.18 \mathrm{~s} .8 d . \times \frac{153}{102} \\
= & £ 2.18 s .8 d . \times \frac{3}{2}=£ 4.8 s .
\end{aligned}
$$

Examples XI.

Express in simplest form

1. The ratio of 630 to 936 .
2. The ratio of $2 \cdot 375$ to $\frac{19}{2}$ of $6 \cdot 6$.
3. The ratio of $£ 1.3$ s. to $£ 4.6 s .3 d$.
4. The ratio of 6 cwt . 2 qrs. 8 lbs. to 1 ton 3 cwt .
5. If four acres of land cost $£ 121$, at what rate is this per square yard?
6. If 8 cwt. 3 qrs. of material cost $£ 40.10$ s. 10 d ., at what rate is this per ton?
7. If a train travel 35 miles an hour, at what rate is this in feet per second?
8. What sum of money bears to $£ 32$ the same ratio that $85 \frac{1}{2}$. bears to 114 ?
9. Find a sum of money which has to $£ 244.4 s .3 \frac{3}{4} d$. the ratio of $4: 51$.
10. What weight bears to 47 tons the ratio which $11 s .8 \frac{1}{4} d$. bears to $£ 39$. 19 s .?
11. If a train takes 29 min. 45 secs. to run 10 miles 5 furlongs, how far will it run in 11 min .40 secs. ?
12. Find the cost of a foreign telegram of 425 words at the rate of $£ 1.12 \mathrm{~s} .6 \mathrm{~d}$. for 20 words.
13. If 17 men can do a piece of work in 68 days, how many must be employed to do the work in 4 days?
14. How long will it take 32 men to reap a field which 24 men can finish in 5 hours?
15. Steaming 18 knots an hour, a passage is made in 180 hours; how long would the same passage take at a speed of 10 knots an hour?
16. If 6 cwt. 2 qrs. 2 llos. of sugar cost $£ 9.3$ s. $4 d$., how much will 4 cwt. 2 qrs. 7 lbs. cost?
17. If 5 ac. 3 r. 4 p. of land is worth $£ 1125$, what should be given for 44 ac. 3 r. 1 p.?
18. If from every 100 llos. of sea-water $2 \frac{1}{2}$ lbs. of salt may be obtained, what weight of water must be evaporated to yield half a ton of salt ?
19. If 1 ton 16 cwt. 94 lbs . of coal cost £2. 7 s . 6 d ., how much can be bought for $£ 17$. 16 s . 3 d.?
20. The debts of a bankrupt amount to $£ 1792$, and his whole property is worth $£ 1344$; how much can he pay in the pound?
21. The debts of a bankrupt amount to $£ 563$. 15 s., and his assets to $£ 371.2 s .8 \frac{1}{2} d$.; how much can he pay in the pound?
22. After paying income-tax at the rate of $4 d$. in the pound, I have £578. 4s. per annum left. What is my gross income?
23. After paying income-tax at the rate of $5 d$. in the pound, a man has £576. 6s. 9 d. a year. How much tax did he pay?
24. If one train runs 49 miles in 1 hour 10 minutes, and another runs 770 yards in $37 \frac{1}{2}$ seconds, which has the higher speed?
25. Compare (as a ratio) the rates of travelling of a bicyclist who goes $34 \frac{1}{8}$ miles in 2 hrs .10 mins. and a train which travels $59 \frac{1}{2}$ miles in 1 hr .42 mins.
26. If 2 cwt. 3 qrs. 18 lbs. of tea cost as much as 27 cwt. 2 qrs. 17 lbs . of sugar, compare the values of equal weights of tea and sugar.
27. If 5 cwt. 3 qrs .8 lbs . of tea cost as much as 55 cwt. 1 qr . 6 lbs. of sugar, what quantity of sugar should be given in exchange for 15 lbs . of tea?
28. A man drove from A to B, a distance of 54 miles, at an average rate of 8 miles an hour. Another man, starting half-an-hour after the first, arrived at $B 15$ minutes before him; find the ratio of their speeds.
29. A farmer bought 4 horses and 7 cows for $£ 238$, the prices of a horse and a cow being in the ratio of $5: 2$. How much did he give for each?
30. If it costs as much to feed 3 men as to feed 4 boys, and if for 3 boys the cost is $19 s .2 \frac{1}{4} d$. per week, what will it cost per week to feed 51 men?
31. If 5 men or 7 women can do a piece of work in 37 days, in what time will 7 men and 5 wonen do a piece twice as great?

Express in simplest form
*32. The ratio of $2 \frac{1}{4}$ to $7 \frac{1}{3}$.
*33. The ratio of $4 \cdot 333 \ldots$ to $10 \frac{1}{9}+3 \cdot 0333 \ldots$.
*34. Find the number that is to $7 \frac{2}{3}$ in the ratio of $£ 3.1 \mathrm{~s} .3 \mathrm{~d}$. to £4. 13s. $11 d$.

Express in simplest form the ratio which
*35. $\frac{2}{3}$ of $£ 27.1$.s. $5 \frac{3}{4} d$. bears to 0.6 of $£ 42.10$ s. $10 \frac{3}{4} d$.
*36. $\frac{3}{4}$ of 53 cwt. 3 qrs. 3 lbs. bears to 0.4 of 65 cwt. 0 qrs. 11 lbs .
*37. $\frac{5}{6}$ of $£ 5.9 \mathrm{~s}$. 8 d . bears to $1 \cdot 4242 \ldots$ of $£ 4$. 16 s. $3 d$.
*38. $\frac{3}{7}$ of $\frac{2}{9}$ of $£ 5.15 s .6 d$. bears to $\frac{11}{122}$ of £16. 0 s. $3 d$.
*39. If either 5 men or 9 boys can do a certain piece of work in 19 days, in how many days can 13 men and 7 boys, working together, do a piece of work twice as great ?

Twelfth Week. Compound Proportion.

Notes and Hints for Solution. The student who has made himself familiar with the principles of Simple Proportion will have no difficulty in applying them to more intricate cases, where the required result is obtained by considering the combined effect of two or more ratios.

Example 1. If 27 men mow a field of 90 acres in 7 days, working 8 hours a day, how many men will be required to mow 200 acres in 16 days, if they work 10 hours a day?

The question is how many men? State the question so as to place last the term corresponding to the answer. Thus

> 90 acres mown in 7 days of 8 hours each by 27 men,
> 200 acres ", 16 days ,, 10 hours ", how many men?

Now, other conditions remaining the same, if the number of acres were changed from 90 to 200 , more men would be needed;
$\therefore \quad$ we multiply by the increasing ratio $\frac{200}{90}$ or $\frac{20}{9}$.
Again, if the number of days allowed were changed from 7 to 16 , fewer men would be needed for the work;
$\therefore \quad$ we multiply by the diminishing ratio $\frac{7}{16}$.
Lastly, if the number of working hours per day were changed from 8 to 10 , fewer men would do the work;
$\therefore \quad$ we multiply by the diminishing ratio $\frac{8}{10}$ or $\frac{4}{5}$.
Hence the required number of men $=27 \times \frac{20}{9} \times \frac{7}{16} \times \frac{4}{5}=21$.
Note. The reasoning, given in full in this example, should be done mentally.

Example 2. A man can read a book of 220 pages, each containing 28 lines, with an average of 12 words to the line, in $5 \frac{1}{2}$ hours; how long will it take him to read a book of 400 pages, each of 36 lines, with an average of 14 words to a line ?

$$
\begin{array}{ll}
220 \text { pages } 28 \text { lines } 12 \text { words } 5 \frac{1}{2} \text { hours } \\
400 \quad, \quad 36,14 \text {," how many hours? }
\end{array}
$$

Required number of hours

$$
=5 \frac{1}{2} \times \frac{400}{2} \frac{0}{0} \times \frac{36}{28} \times \frac{14}{12}=\frac{11}{2} \times \frac{20}{11} \times \frac{9}{7} \times \frac{7}{6}=15 .
$$

Examples XII.

1. How much will 42 men earn in 30 days, if 69 men can earn £368 in 35 days?
2. How many horses will be required to plough 936 acres in 39 days, if 26 horses can plough 1152 acres in 24 days?
3. If 49 men can empty a reservoir in 65 days by pumping 8 hours a day, how many hours a day must 196 men work to empty it in 26 days?
4. If $16 \frac{1}{4}$ tons of provisions last a garrison of 2100 men for 13 days, what weight of provisions will be required for 4340 men for 42 days?
5. If 4 men mow 15 acres in 10 working days of 7 hours each, in how many days of $6 \frac{1}{2}$ hours could 7 men mow $19 \frac{1}{2}$ acres?
6. If 285 men can dig a trench in 120 days, working 8 hours a day, how many men must be employed to do one-fifth of the work in 152 days, working 10 hours a day?
7. If 40 men can dig a trench in 4 days of 9 hours each, how many men must be employed to dig a trench twice as long, half as wide again, and three-quarters of the depth of the former in 5 days of 8 hours?
8. If 90 men can dig a ditch 50 yards long, 6 feet wide, and 12 feet deep in $4 \frac{1}{2}$ days, how many men can dig a ditch 240 feet long, 2 yards wide, and 4 feet deep in 18 days?
9. If 24 men in 2 days of 12 hours each dig a trench 132 yards long, 4 yards wide, and 2 yards deep, how many hours a day must 90 men work to dig in 4 days a trench 3 times as long, the width being 5 yards, and the depth 3 yards?
10. If goods weighing 1 ton 5 cwt. $28 \frac{1}{2}$ lbs. can be carried 100 miles for $£ 23.11 s$. $5 d$., how many miles can goods weighing 5 tons 42 lbs. be carried for $£ 210.15 s .9 \mathrm{~d}$. ?
11. If 8 men can dig a field of $9 \frac{1}{2}$ acres in 19 days, how long will it take 5 men to dig one containing 5 ac .1 r .10 p .?
12. If an express train travelling at the rate of 55 miles an hour can accomplish a journey in $3 \frac{1}{2}$ hours, how long will it take a slow train to travel two-thirds of the distance, its rate being to that of the express train as 4 to 9 ?
13. The travelling expenses of 7 tourists for 5 weeks amounted to $£ 75.5$ s. ; a second party of 18 made the same tour in 6 weeks, their average weekly expenditure per man being $\frac{4}{9}$ of that of the first party. What were the total expenses of the second party?
14. If 10 sheep or 15 lambs require 40 bushels of turnips for 7 days, how long should 36 bushels last 6 sheep and 18 lambs?
15. If a family by using 6 gas-burners for 5 hours a day pay £1. 5 s. per quarter, when gas is at 5 shillings per 1000 cubic feet, what should be paid per quarter when 8 burners are used for 3 hours a day, gas being at $3 s .9$ d. per 1000 cubic feet?
16. Two horses can plough in a given time as much as 3 oxen, and the daily cost of 4 oxen is equal to that of 3 horses. A certain field can be ploughed by 3 horses in 8 days; find the cost of ploughing it by oxen in 6 days, if the daily cost of a horse is 3 shillings?
17. If 6 compositors, in 16 working days of $10 \frac{1}{2}$ hours each, can set in type 720 pages, each of 60 lines with 40 letters to a line, in how many days of 7 hours each will 9 compositors set 960 pages, each of 45 lines with 50 letters to a line ?
18. If 75 men can perform a piece of work in 12 days of 10 hours each, how many men will perform a piece of work twice as great in one-tenth of the time if they work the same number of hours a day, supposing that two of the second gang can do as much work in an hour as three of the first gang?
19. A piece of work may be done in 6 days by 10 men or by 18 boys in 8 days. If 5 men and 9 boys are employed on it, how long will they take? And if $£ 60$ is given to them in wages, how much does each man and each boy earn per day?
20. If a certain amount of work is done by 9 men, 12 women, and 13 boys in 11 days, how long will the same work take if 18 men, 3 women, and 5 boys are set to do it, assuming that the ratio of a man's work to a woman's is $5: 3$, and a woman's work to a boy's is $4: 3$?
21. If 175 men and 240 boys do in 1330 days the same amount of work as 603 men and 1005 boys do in 350 days; compare the average daily work done by each man with that done by each boy.
22. If 4 men and 6 boys working 9 hours a day mow $69 \cdot 3$ acres of corn in 10 days, in how many days will 5 men and 4 boys working 10 hours and 40 minutes a day mow 67.76 acres, it being assumed that 2 men risw as much as 5 boys?
23. If 20 English navvies, each earning $3 s .6 \mathrm{~d}$. a day, can do the same piece of work in 15 days that it takes 28 foreign workmen, each earning 3 francs a day, to complete in 20 days; determine which class of workmen it is more profitable to employ (1 franc $=10 \mathrm{~d}$.). If a piece of work done by the navvies cost $£ 3000$, what would be the cost of the same work done by the foreign workmen ?

Thirteenth Week. Proportional Parts.

Notes and Hints for Solution. It is often required to break up a quantity into parts which bear to one another a given relation. For instance, we may be asked to distribute a sum of money in shares proportional to certain numbers. The method of effecting this will be seen from the following examples.

Example 1. Divide £79. $1 s .9 d$. among three persons, A, B, and C, so that the sums received may be proportional to the numbers 5, 6, 8 .

Here the given sum is to be divided into $5+6+8$, or 19 , equal shares, of which A is to have $5, B 6$, and $C 8$.

Now one such share $=\frac{1}{19}$ of $£ 79.1 s .9 d .=£ 4.3 s .3 d$.
$\therefore A$ gets five times £4. 3s. $3 d .=£ 20.16 \mathrm{~s} .3 \mathrm{~d}$.

$$
\begin{aligned}
& B=, \quad \text { six }, \quad \text { £4. 3s. } 3 d .=£ 24.19 s .6 d . \\
& C, " \text { eight }, " £ 4.3 s .3 d .=£ 33 . \quad 6 s .
\end{aligned}
$$

Example 2. Divide $£ 43.12 s$. among A, B, and C, so that A gets $2 \frac{1}{3}$ as much as B, and $B 1 \frac{1}{2}$ as much as C.

Suppose C gets 1 share; then B will get $1 \frac{1}{2}$ shares, and A will get $2 \frac{1}{3} \times 1 \frac{1}{2}=3 \frac{1}{2}$ shares.

Now $3 \frac{1}{2}, 1 \frac{1}{2}, 1$ are respectively equal to $\frac{7}{2}, \frac{3}{2}, 1$; and are therefore proportional to the numbers $7,3,2$.

Thus proceeding as before,

$$
\begin{aligned}
& A \text { gets } \frac{7}{12} \quad \text { of } £ 43.12 s .=£ 25 . \quad 8 s .8 d . \\
& B \text { gets } \frac{3}{12}\left(\text { i.e. } \frac{1}{4}\right) \text { of } £ 43.12 s .=£ 10.18 s .0 d . \\
& C \text { gets } \frac{2}{12}\left(\text { i.e. } \frac{1}{6}\right) \text { of } £ 43.12 s .=£ 7 . \quad 5 s .4 d .
\end{aligned}
$$

Example 3. A and B become partners in a business, A contributing £500 towards the capital, and $B £ 600$. After 5 months they are joined by C, with a capital of $£ 300$; but 9 months after starting B retires, taking out all his money. At the end of a year the profits are found to be $£ 384$. How should they be divided?

Here the claim of each partner depends partly on the amount of capital advanced, and partly on the time during which it was employed.

Suppose the employment of $£ 100$ for 1 month to constitute 1 share.
Then A may claim 5×12, or 60 shares;
B may claim 6×9, or 54 shares ;
and C may claim 3×7, or 21 shares.
Thus we have simply to divide $£ 384$ into parts proportional to 60 , 54 , and 21 ; i.e. to 20,18 , and 7.
e.c.

Examples XIII.

1. Shew how a sum of $£ 5880$ may be divided into three shares proportional to the numbers $3,5,7$.
2. Divide $£ 27,200$ among three persons in shares proportional to the numbers $8,5,3$.
3. Divide £2. $16 s .3 d$. into shares proportional to the numbers 13, 9, 3.
4. Divide $£ 16.17$ s. $6 d$. into shares proportional to the fractions $\frac{1}{4}, \frac{2}{5}, \frac{3}{5}$.
5. The sum of $£ 81.10$ s. is to be divided into four parts proportional to the fractions $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$; find the value of each part.
6. The sum of $£ 32,818$ is left to four persons to be divided into shares proportional to the fractions $\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}$. How much will each person receive?
7. Three persons A, B, and C join in a speculation, A contributing $£ 500$ to the capital, $B £ 300$, and $C £ 200$; if the total profits amount to $£ 80$, how much should each contributor receive?
8. A, B, and C enter into partnership, A contributing $£ 1500$, $B £ 1650$, and $C £ 2100$ to the capital. How ought an annual profit of $£ 700$ to be divided among them ?
9. The sum of $£ 5100$ is to be raised jointly by three towns, whose populations are respectively 4250,5250 , and 7500 . If the towns contribute proportionally to their population, for what payment is each town responsible?
10. A bankrupt's estate is sold for $£ 4320$ to meet the claims of four creditors to whom he owes respectively $£ 1440, £ 1680, £ 2400$, and $£ 3120$. How much should each creditor receive?
11. The debts of a bankrupt are $£ 65, £ 75.3 s .4 d$., and $£ 108.8 s .4 d$.; and his assets are $£ 136.14 \mathrm{~s}$. 5 d . What will each creditor receive?
12. A field containing 13 ac. 3 r .20 p . is divided into three allotments, whose areas are proportional to the numbers $9,10,11$. If each allotment is subdivided into 37 cottage gardens, find the size of the gardens in each set.
13. Divide $£ 1375$ among three persons, A, B, and C, so that A may receive three times as much as B, and C half as much again as A and B together.
14. Divide $£ 60.2 s .183$. between A, B, and C, so that A may have half as much again as B, and B half as much again as C.
15. The sum of $£ 9.12 \mathrm{~s} .6 \mathrm{~d}$. is to be divided between 16 men, 18 women and 36 children ; a woman is to have three times as much as a child, and a man as much as a woman and child together. What will be the share of each ?
16. Divide $£ 146$ between A, B, and C, so that as often as A gets 4s., B may get 5 s. $4 d$., and as often as B gets 8 s. $9 d$., C may get 7s. 6 d .
17. Three men A, B, and C join in a speculation, for which A furnishes $£ 100$ for 3 months, $B £ 80$ for 5 months, and $C £ 250$ for 2 months. The result is a profit of $£ 100$: how should this be divided among them?
18. A commences business with a capital of $£ 4000$, and after 4 months takes B into partnership with a capital of $£ 300$. Two months later C joins the firm with a capital of $£ 5000$. At the end of the year the profits are found to be $£ 1557.15 s$. ; how much of this sum should each partner receive ?
19. A, B, and C enter into partnership on January lst with capitals of $£ 2200, £ 2600$, and $£ 3000$ respectively. At the end of half-a-year B withdraws half his capital. At the end of the year how much should each partner receive of the total profits, viz., £789. 98. $7 d$.?
20. Of four cisterns, the second contains half as much again as the first ; the third contains one-third as much again as the first two together; the fourth contains one-fourth as much again as the first three together. The weight of water in the third cistern is 7 tons 4 cwt. What weight of water is contained in the fourth cistern?
*21. Divide 204 into three parts proportional to the numbers 7, 8, 9.
*22. Divide £4. 2 s .6 d . amongst three persons A, B, and C; so that A 's share may be $\frac{5}{8}$ of B 's, and B 's share $1 \frac{1}{2}$ of C 's.
*23. Divide $£ 90.6 s$. 0 d. amongst A, B, and C, so that A may receive $\frac{3}{4}$ of what B receives, and $C \frac{1}{5}$ of what A and B receive together.
*24. The area of a country is $32,300,000$ acres: it consists of three kinds of land, viz. first, arable ; secondly, meadow ; thirdly, waste. The areas of these kinds are proportional to the numbers $2,3, \frac{2}{3}$: how many acres are there of each kind?
*25. A sum of money is divided between A, B, and $C:$ if C gets twice as much as A, and A and B together get $£ 50$, and B and C together get $£ 60$; find how much each person gets.
*26. A man owes three bills, one of which could be paid by a certain number of florins, another by twice that number of halfcrowns, and the third by six times that number of shillings. The bills amount in all to $£ 7.3 s$. 0 d . What are the several sums?
*27. A and B are partners in a business, in which A has invested $£ 6750$ and $B £ 1500$. B receives 15 per cent. of all the profits for acting as manager, and the remainder is divided between the partners in proportion to the sums invested. What will each receive out of profits amounting to $£ 726.9 s .2 d$. ?

Fourteenth Week. Square Measure. Rectangular Areas.
Notes and Hints for Solution. In applying the fundamental rule of Rectangular Areas, viz.

$$
\text { Area }=\text { Length } \times \text { Breadth },
$$

care must be taken to express the length and breadth in units of the same denomination ; the area will then be obtained in corresponding square units.

Similarly, the rule Length $=$ Area \div Breadth requires that the linear and square units should correspond. Thus, if the area is expressed in square feet, the breadth must be expressed in linear feet; the length will then be obtained also in linear feet.

In addition to the ordinary Table of Square Measure, the student should observe the following :

The chain, used in land-surveying, is 22 yards in length, and is divided into 100 links ($7 \cdot 92$ inches). Hence we have the following table :

22 yards $=1$ chain ;
$\therefore(22)^{2}$, or 484, square yards $=1$ square chain ;
Now

$$
4840 \text { square yards = } 1 \text { acre ; }
$$

$\therefore 10$ square chains $=1$ acre.
Similarly, since $\quad 100$ links $=1$ chain ;

$$
\begin{gathered}
\therefore \quad(100)^{2} \text {, or } 10,000 \text { square links }=1 \text { square chain ; } \\
\therefore \quad 100,000 \text { square links }=1 \text { acre. }
\end{gathered}
$$

Thus, square chains are converted into acres by dividing by 10 ; and square links are converted into acres by dividing by 100,000.

For instance, $\quad 987.5$ square chains $=98.75$ acres ; 807,204 square links $=8 \cdot 07204$ acres.

Example 1. A rectangular allotment of ground is 24 chains 25 links long by 16 chains 80 links broad. Find to the nearest penny its rent at the rate of $£ 5.15 \mathrm{~s} .6 \mathrm{~d}$. an acre.

Here the length $=24$ chains 25 links $=2425$ links;
the breadth $=16$ chains 80 links $=1680$ links;
\therefore the area $=2425 \times 1680$ sq. links $=4,074,000$ sq. links $=40.74$ acres.

Required the rent of 40.74 acres at $£ 5.15 s .6 \mathrm{~d}$. an acre.

Example 2. The area of a rectangular field is 4 ac. 2 r. 9 p., and its length is 12 chains 15 links: find its breadth.

| 40 | $9 \cdot 0 \quad$ poles
 $2 \cdot 225$ roods |
| ---: | :--- | :--- |

$\therefore \quad 4$ ac. 2 r. 9 p. $=4.55625$ acres $=45.5625$ sq. chains.
And

$$
\begin{aligned}
\text { breadth } & =\frac{\text { area }}{\text { length }}=\frac{45 \cdot 5625}{12 \cdot 15} \text { chains } \\
& =3 \cdot 75 \text { chains }=3 \text { chains } 75 \text { links. }
\end{aligned}
$$

Example 3. A court-yard, 50 feet long by 42 feet broad, contains a rectangular lawn surrounded by a gravel path of uniform width. If the width of the path is 6 feet, find the dimensions of the lawn, and the area of the path.

Let $A B C D$ represent the rectangular court-yard, and EFGH the lawn. Then $E F=38 \mathrm{ft}$., and $E H=30 \mathrm{ft}$.

And the area of the path

$$
\begin{aligned}
& =\text { area } A B C D-\text { area } E F G H \\
& =50 \times 42 \text { sq. ft. }-38 \times 30 \text { sq. ft. } \\
& =960 \mathrm{sq} . \mathrm{ft} .
\end{aligned}
$$

Example 4. Find the area of the four walls of a room, whose length is 18 ft .7 in ., breadth 14 ft .5 in ., and height 11 ft .4 in.

The area of four walls $=$ twice $($ length + breadth $) \times$ height

$$
\begin{aligned}
& =2 \times 33 \times 11 \frac{1}{3} \text { sq. ft. } \\
& =748 \mathrm{sq} . \mathrm{ft} .=83 \text { sq. yds. } 1 \text { sq. ft. }
\end{aligned}
$$

Examples XIV.

1. Find the areas of the rectangles in which
(i.) The length is 3 yds. 2 ft ., and the breadth $1 \mathrm{yd} .1 \mathrm{ft} . ;$
(ii.) The length is 5 yds. 2 ft .3 in ., the breadth $2 \mathrm{yds}$.1 ft .6 in .
2. Find the areas of the following rectangles, giving the result in acres:
(i.) The length is 363 yds ., the breadth 240 yds . ;
(ii.) The length is 25 chains, the breadth 5 chains;
(iii.) The length is 20 chains, the breadth 8 chains 25 links.
3. Find the areas of the squares in which
(i.) Each side is 880 yards (result in acres);
(ii.) Each side is 21 chains 75 links.
4. What will be the cost of paving a passage 47 ft .6 in . long, and 9 ft .6 in . wide, at the rate of $18 s$. per square yard ?
5. Find the cost of paving a rectangular area, whose length is 40 yds . and breadth $33 \mathrm{yds}$.1 ft ., at the rate of $3 d$. per square foot.
6. Find the rent of a rectangular field, 198 yards long by 165 yards broad, at £4. 6s. 8d. per acre.
7. A rectangular tennis-ground is 110 yds . long by 55 yds . wide. Find the expense of sowing it with grass-seed. at the rate of $3 \frac{1}{2}$ bushels to the acre, the price of the seed being $£ 1.1 s .4 d$. per bushel.
8. Find the lengths of the following rectangles, having given that
(i.) The area is 3524 sq. yds. 8 sq. ft., and the breadth is 51 yds. 1 ft. ;
(ii.) The area is $76 \frac{1}{2}$ acres, and the breadth 36 chains;
(iii.) The acreage is $37 \cdot 6607$, and the length 23 chains 45 links.
9. It cost $£ 11$. 15 s . 9 d . to floor a room with planking at 8 d . per square foot ; if the breadth of the room is 17 ft .3 in ., find the length.
10. The rent of a rectangular plot of ground is £53. 7s. 6d. at the rate of $17 s .6 d$. per acre ; if the length is 40 chains find the breadth.
11. How many tiles, each 9 in. long by 6 in . wide, will be required to pave a court 24 ft .6 in . in length, and 15 ft .9 in . in breadth ?
12. A rectangular plot of ground, 50 yds . long and 40 yds . broad, is to be laid with turfs, $1 \frac{1}{2} \mathrm{ft}$. long by 6 in . wide. Find the cost if the turfs are laid at the rate of $3 s$. per hundred.
13. How many planks, 2 ft .6 in . long and 8 in . wide, will be needed to floor a room which measures 25 ft . by 16 ft .? Find the cost of supplying the planks at $5 d$. per foot.
14. How many yards of paper, 35 in . wide, are needed to cover a wall 22 ft .6 in . long by 12 ft .3 in . broad ?
15. What will it cost to carpet a room 20 ft .3 in . long by 16 ft . broad with carpet 2 ft .3 in . wide at $3 s .4 d$. per yard?
16. How many yards of carpet $\frac{3}{4}$ yd. wide will be needed to cover the floor of a room 27 ft . long and 12 ft .9 in . broad? And what will it cost at $3 s .101 d$. per yard ?
17. For a room, 21 ft . long by 15 ft . wide, the length of carpet required is 46 yds. 2 ft . What is the width of the carpet in inches?
18. If 64 planks, 6 ft .3 in . long and $8 \frac{1}{4} \mathrm{in}$. wide, are required to floor a room 25 ft . long; what is its breadth ?
19. It costs $£ 12$. 12 s . to carpet a room with carpet 27 inches wide, at $3 s .6 d$. per yard. If the length of the room is 27 ft ., find its breadth.
20. Find in square yards the area of a path 6 feet wide surrounding a lawn whose length is 30 yards and breadth 24 yards.
21. A court-yard, whose length is 55 yds .1 ft . and breadth 33 yds. 1 ft ., contains a rectangular lawn surrounded by a gravel path 8 ft . wide. Find the area of the lawn and of the path in square yards and feet.
22. A carpet is to be provided for a room 24 ft .4 in . long and 17 ft .6 in . wide, so as to leave a uniform margin 2 ft . wide. How many yards of carpet, 30 in . wide, will he required? And what will it cost to stain the margin at $6 \frac{3}{4} d$. per square yard ?
23. What length of carpet 30 in . wide is required for a room 20 ft .4 in . long by 18 ft .8 in . broad, allowing for a margin of 2 ft .8 in . all round? Find also the number of tiles, each 8 in . by 4 in ., required to fill this margin.
24. How many square feet of gravel will be required to make a path, a foot wide, round the outside of a rectangular flower-bed, whose length and breadth are respectively 3 poles and $2 \frac{1}{2}$ yards?
25. A room 21 feet long by 14 ft .3 in . broad is to be carpeted with Brussels carpet $\frac{3}{4} \mathrm{yd}$. wide at 3 s .10 d . a yard, so as to leare a margin all round $\frac{1}{2}$ yard wide. This margin is to be covered with matting at $3 s$. the square yard. How much of each material will be required? And what will be the cost of the whole?
26. Find the area of the four walls of a room 27 ft . long, 23 ft .6 in . wide, and 16 feet high.
27. A room, 16 ft . long, 9 ft . broad, and 10 ft . high, contains a door 8 ft . by 4 ft ., two windows each 5 ft . by 4 ft ., and a fire-place 6 ft . by 4 ft .6 in . What area of the four walls remains to be papered?
28. How many pieces of paper, 22 in . wide, are required for the walls of a room, 15 ft .4 in . long, 14 ft .8 in . wide, and 11 ft . high ? (N.B.-A piece of paper is 12 yds. long.)
29. A passage, 40 ft . long, 8 ft . wide, and 10 ft . high, has two doors 7 ft . by 4 ft ., and a window 5 ft .6 in . by 2 ft . Find the cost of paper $23 \frac{1}{2} \mathrm{in}$. wide for the walls, at the rate of $3 s .6 d$. per piece of 12 yards.
30. For a room 16 ft . long, 12 ft . wide, and 10 ft .6 in . high, the cost of paper is $£ 1.12 \mathrm{~s} .8 \mathrm{~d}$. If the width of the paper is 21 in ., what is its price per piece (of 12 yds .) ?
31. The total cost of papering a room 20 ft . long, 12 ft . broad, and 10 ft . high, with paper 32 in . wide is $£ 1.13 s .4 d$. If the paper cost 4 s . 6 d . per piece (of 12 yds .), how much per piece was charged for hanging?
32. The walls of a room which measures 21 ft . long, 15 ft .9 in . wide, and 11 ft .8 in . high, are painted for $£ 17.17 s .3 \frac{1}{2} d$. Find the additional cost of painting the ceiling at the same rate.
33. The cost of paper for a room, 15 ft .7 in . long by 14 ft .5 in . broad, is $£ 1.15$ s. 0 d. If the paper is 30 in . wide, and costs 5 s. per piece (of 12 yards), find the height of the room.
34. The breadth of a room is half as much again as its height, its length is twice its height, and it costs $£ 5.58 .0 d$. to paint its walls at the rate of $1 \frac{1}{4} d$. per square foot. What are its dimensions?
35. Carpet 2 feet wide at 6 s . a yard for a room 27 feet wide costs £40. 10 s. ; and paper 1 ft .6 in . wide at 6 d . a yard for its walls costs £7. 128.0 d . What is the height of the room?
36. The length of a room is treble its breadth; and the cost of carpet 36 in . wide at 7 s .6 d . per yard is $£ 28.2 \mathrm{~s} .6 d$.; also the cost of painting the four walls at $4 \frac{1}{2} d$. per square foot is $£ 28.2 s .6 d$. What is the height of the room?
*37. A room is 18 ft . long, 12 ft . wide, and 11 ft . high ; what length of paper, a yard wide, would be required to paper the four walls and ceiling?
*38. All round the floor of a room, which is 28 ft . long and 22 ft . wide, there is a border 2 ft . wide which is left uncarpeted. Find the cost of staining the border at $1 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d}$. a square yard. Find also the number of yards of carpet, 27 in . wide, required for covering the rest of the floor, and the cost of the carpet at $3 s .9 d$. a yard.

Fifteenth Week. Cubic Measure. Rectangular Solids.

Notes and Hints for Solution. The following examples are intended to illustrate the fundamental rule comecting the volume of a rectangular solid with its linear dimensions, i.e., its length, breadth, and thickness. The rule may be stated in two forms :
(i.) Volume $=$ Length \times Breadth \times Thickness.
(ii.) Volume $=$ Area of Base \times Thickness.

Care must be taken to see that the linear, square, and cubic units correspond.

Example 1. Find the weight of a steel bar, 48 inches long, $4 \cdot 5$ inches broad, and 2.5 inches thick, taking steel to weigh $7 \cdot 8$ times its bulk of water, and 1 cubic foot of water to weigh 1000 ounces.

$$
\begin{aligned}
\text { Volume } & =\text { length } \times \text { breadth } \times \text { thickness } \\
& =48 \times 4.5 \times 2.5 \text { cubic inches }=540 \text { cubic inches } \\
& =\frac{5}{16} \text { cubic foot } ; \\
\text { Weight } & =\frac{5}{16} \text { of } 7800 \mathrm{oz} .=2437 \frac{1}{2} \mathrm{oz} .
\end{aligned}
$$

Example 2. It is found that a level seam of coal yields 3630 tons to the acre. If the coal is 1.28 times as heavy as water, and 1 cubic foot of water weighs 1000 oz ., find the average thickness of the seam.

Weight of $1 \mathrm{cub} . \mathrm{ft}$. of coal $=1280 \mathrm{oz} .=80 \mathrm{lbs} .=\frac{1}{28}$ ton.
Volume of 1 acre of coal $=$ total weight \div weight of 1 cub . ft .

$$
=\left(3630 \div \frac{1}{28}\right) \text { cub. ft. }=(3630 \times 28) \text { cub. ft. }
$$

Thickness of coal

$$
=\text { volume } \div \text { area of base }
$$

$$
=(3630 \times 28) \text { cub. ft. } \div(4840 \times 9) \text { sq. ft. }
$$

$$
=2 \frac{1}{3} \text { linear feet }=2 \mathrm{ft} .4 \mathrm{in} .
$$

Example 3. Water passes from a reservoir into a canal by a channel 8 feet wide and $2 \frac{1}{2}$ feet deep. If the water flows at a uniform rate of 4 miles an hour, find roughly how many gallons pass into the canal in ten minutes, given 1 cubic foot $=6 \frac{1}{4}$ gallons nearly.

In 10 minutes a column of water passes whose length is

$$
\frac{1}{6} \text { of } 4 \times 1760 \times 3 \text { feet }=3520 \text { feet ; }
$$

\therefore the volume of the column of water

$$
=8 \times 2 \frac{1}{2} \times 3520 \text { cub. ft. }=70,400 \text { cub. } \mathrm{ft} .
$$

\therefore approx. number of gallons $=70,400 \times 6 \frac{1}{4}=440,000$.

Examples XV.

1. Find the volume of (i.) the rectangular solid, of which the length, breadth, and height are respectively $6 \mathrm{ft} .8 \mathrm{in} ., 5 \mathrm{ft} .3$. in., and 2 ft .; (ii.) of the cube of which each edge measures 6 ft .6 in .
2. What is the weight (in tons) of a rectangular block of granite whose dimensions are 7 ft ., 5 ft ., and 4 ft ., if one cubic foot weighs 166 lbs. ? And what will it cost to polish the whole surface at the rate of $1 s .6 d$. per square foot?
3. How many gallons are contained in a cubical vessel which measures internally 4 ft . in length, breadth, and depth, supposing that 1 cubic foot contains $6 \frac{1}{4}$ gallons?
4. The internal measurements of a rectangular tank are 16 ft . long, 8 ft . wide, and 7 ft . deep; how many tons of water will it hold if 1 cubic foot of water weighs 1000 ounces? And what will be the cost of lining it with thin zinc at the rate of $6 \frac{3}{4} d$. per square foot?
5. A cistern (without lid) 6 ft . long, 3 ft . broad, and $2 \frac{1}{2} \mathrm{ft}$. deep, is to be lined with thin zinc at $5 d$. the square foot. What will be the cost? If the cistern is two-thirds full, find the weight of water, taking the weight of 1 cubic foot as 1000 ounces.
6. How long will it take to dig a trench 160 yards long, 16 ft . wide, and 14 ft . deep, if 30 tons of earth are removed in a day? [1 cubic foot of earth weighs $92 \frac{1}{2} \mathrm{lbs}$.]
7. A brick (with mortar) measures 9 in . by $4 \frac{1}{2} \mathrm{in}$. by 3 in . Find the number of bricks required for a wall 80 yds . long, 10 ft . high, and 9 inches thick ; and find their cost at the rate of 35 shillings per thousand.
8. If a brick (with mortar) occupies a space 9 in . by $4 \frac{1}{2} \mathrm{in}$. by 3 in., how many bricks would be required for a solid mass of masonry, 60 ft . long, 8 ft .3 in . wide, and 9 ft .3 in . high? And find to the nearest penny their cost at 30 shillings per thousand.
9. Four labourers undertake to excavate a pit measuring 24 ft . long, 20 feet wide, and 3 yards deep, at the rate of $1 s$. per cubic yard for the first yard in depth, $2 s$. for the second, and $4 s$. per cubic yard for the third yard in depth. What should each receive ?
10. Find the cost of making a road half-a-mile long and 36 feet wide, the soil being first excavated to a depth•of 1 foot at a cost of 1s. per cubic yard, rubble being then laid in 9 inches deep at a cost of 1 s. $6 d$. per cubic yard, and 3 inches of gravel at $3 s$. $3 d$. per cubic yard being laid on the top, and the whole consolidated by a steam roller at a cost of $2 d$. per square yard.
11. Find the weight of an oak beam 12 ft . long, 18 in . wide, and 16 in . thick; it being given that seasoned oak weighs 85 times its bulk of water, and that 1 cubic foot of water weighs 1000 oz .
12. Find the weight per square yard of sheet zinc $\frac{1}{8}$ in. thick; it being given that zinc weighs $7 \cdot 2$ times its bulk of water, and that 1 cubic foot of water weighs 1000 oz .
13. The external length, breadth, and thickness of a closed box are 4 ft ., 2 ft ., and 16 inches respectively, and the wood of which it is made is one inch thick. Find the number of cubic inches of wood used in making the box, and the cost of lining it with thin metal at $4 \frac{1}{2} d$. per square foot.
14. A closed box, whose external dimensions are $4 \mathrm{ft}$.8 in ., 4 ft .2 in ., and 2 ft .6 in ., is made of deal one inch thick. Find the weight of the box, given that one cubic foot of deal weighs 912 ounces.
15. A rectangular zinc cistern (open at the top) measures externally 2 ft .8 in . long, 1 ft .9 in . broad, and $1 \mathrm{ft} .4 \frac{1}{2} \mathrm{in}$. deep. If the metal is $\frac{1}{2}$ inch thick, find (to the nearest lb.) the weight of the cistern, and also its total weight when filled with water. [1 cubic foot of water weighs 1000 oz ., and zinc is 7.215 times as heavy as water.]
16. The capacity of a cistern is $67 \frac{7}{24} \mathrm{cu} . \mathrm{ft}$., and its length and breadth are respectively 6 ft .4 in . and 4 ft .3 in . Find its depth.
17. A cistern when full contains $187 \frac{1}{2}$ gallons, and its length and breadth are respectively 4 ft . and $2 \frac{1}{2} \mathrm{ft}$. If a cubic foot contains 6.25 gallons, find the depth of the cistern.
18. A tank, the area of whose base is 56 square feet, contains $6 \frac{1}{4}$ tons of water. Find the depth of the water, given that one cubic foot of water weighs 1000 oz .
19. If 9 cwt. 57 lbs . of lead were rolled into a sheet 12 ft . long by 6 ft . wide, what would be its thickness? And if 1 ton of lead were rolled into a sheet of uniform thickness 42 inch, find approximately its area in square yards. [Suppose 1 cubic foot of lead to weigh 710 lbs .]
20. A brick (without mortar) measures $8 \frac{1}{2}$ inches in length, 4 inches in breadth, and $2 \frac{1}{2}$ inches in thickness. How many of such bricks are contained in a stack 85 ft . long, 15 ft . wide, and 8 ft .4 in . high ? And if, allowing for mortar, each brick when laid occupies a space 9 in. by $4 \frac{1}{2} \mathrm{in}$. by 3 in., what length of wall 6 feet high, and $13 \frac{1}{2}$ in. wide, could be built from a stack of the above dimensions?
21. A level tract of land 21 miles long and $\frac{3}{4}$ mile wide is flooded to a depth of 5 feet. If a cubic foot of water weighs $62 \frac{1}{2} \mathrm{lbs}$., find in tons the weight of water on the land.
22. Find to the nearest ton the weight of water which falls on an acre of ground during a rainfall of one inch, given that one cubic foot of water weighs 1000 oz . Also estimate the rainfall in gallons, given that 1 gallon of water weighs 10 lbs .
23. Water is drawn off from a reservoir through a channel 6 ft . wide and $2 \frac{1}{2} \mathrm{ft}$. deep. If the water flows at the rate of 3 miles an hour, how many gallons pass out of the reservoir in 10 minutes? [Given that 1 cubic foot contains $6 \frac{1}{4}$ gallons.]
24. Water flows into a rectangular tank through a pipe which admits 15 gallons per minute. Find approximately (in inches per hour) at what rate the water will rise in the tank, if the dimensions of the base are 24 ft . by 18 ft . [Given that 1 cubic $\mathrm{ft} .=6 \frac{1}{4}$ galls.].
25. Supposing the capacity of a gallon to be nearly 277×25 cubic inches, find approximately the number of gallons per square mile in one inch of rainfall.
*26. The rainfall at a particular place is $29 \cdot 2$ inches in a year. To how many gallons per acre is this equivalent, taking a gallon as equivalent to 16 of a cubic foot.
*27. A cubic foot of copper weighs 560 lbs . It is rolled into a square bar 40 ft . long. An exact cube is cut from the bar. What is its weight to the nearest thousandth of a pound ?
*28. Find the cost of the bricks needed for building a wall 30 yards long, 6 feet high, and $13 \frac{1}{2}$ inches thick, having given that bricks cost 25 s. per 1000 , and that each brick when laid fills up a space 9 inches long, $4 \frac{1}{2}$ inches wide, and 3 inches deep.
*29. A pond whose area is half-an-acre is frozen over with ice 2 inches thick; find in tons to the nearest integer the weight of all the ice, if a cubic foot of it weighs $57 \frac{1}{4} \mathrm{lbs}$.
*30. A section of a stream is 10 feet wide and 10 inches deep; the mean flow of the water through the section is at the rate of 3 miles an hour. Taking 25 gallons as equivalent to 4 cubic feet, find how many gallons of water flow through the section in 24 hours.
*31. A rectangular cistern, 8 ft . long, 7 ft . wide, holds when full $6 \frac{1}{4}$ tons of water ; find its depth, assuming that a cubic foot of water weighs 1000 oz . And find also within one-hundredth of a foot the depth of a cistern of the same capacity, having its length, width, and depth all equal.

Sixteenth Week
 Square Root.

Notes and Hints for Solution. Examples of the method of extracting the square root of numerical quantities are given below for reference. The method is based on the following algebraical equivalents :

$$
\begin{aligned}
(\alpha+b)^{2} & =a^{2}+2 a b+b^{2} \\
(a+b+c)^{2} & =(a+b)^{2}+2(\alpha+b) c+c^{2} .
\end{aligned}
$$

Example 1. Extract the square root of 1371.9616 .

The square root required $=37 \cdot 04$.
Note. The periods, each consisting of two digits, are to be marked off from the decimal point each way. Thus to find the square roots of $518 \cdot 076325,7 \cdot 08916, \cdot 00000144$, 3 , we begin by marking off the periods as follows :

$$
5,18,07,63,25, \quad 7,08,91,60, \quad \cdot 00,00,01,44, \quad 3,00,00,00 \ldots
$$

Observe that each period furnishes one digit to the square root.

Example 2. Find the square root of (1) 0007 correct to four places of decimals; (2) $\frac{8}{13}$ correct to three places of decimals.
(1) $\cdot 00,07,00,00,00 \ldots \mid \cdot 02645 \ldots$

564 \begin{tabular}{l|l}

524 \& | $\frac{4}{300}$ |
| :--- |
| 276 |
| $\frac{2700}{2400}$ |
| 2096 |
| 30400 |

\end{tabular}

\therefore Square root required $=\cdot 0265$ correct to 4 places.
(2) $\frac{8}{13}=615384 \ldots$

148	$\left\lvert\, \begin{aligned} & 61,53,84 \ldots \\ & 49 \end{aligned}\right., \ldots$
	1253
	1184
1564	6984
	6256
15684	$728 .$.

\therefore Square root $=784$ correct to 3 places.

Examples XVI.

Find the square root of

1. 576.
1. 3249.
1. 7921.
1. 9409.
1. 17424.
1. 37249 .
2. 299209.
1. 167281 .
2. 1006009 .
3. 18671041.
1. 13704804.
1. 1157428441.
[To take the square root of a mixed number, if the denominator is a perfect square, reduce to an improper fraction, and take the square root of the numerator and denominator separately.]

Find the square root of
13. $3 \frac{1}{16}$
14. $1 \frac{25}{144}$.
15. $8 \frac{17}{169}$.
16. $101 \frac{92}{169}$.
17. $2406 \frac{25}{96} \frac{5}{4}$.
18. $\frac{7}{8}+\frac{3}{4}+\frac{1}{1} \frac{5}{6}+\frac{5}{64}$.

Find the square root of
19. $998 \cdot 56$.
20. $99 \cdot 8001$.
21. $1383 \cdot 0961$.
22. $3263 \cdot 8369$.
23. $2704 \cdot 416016$.
24. 0001595169.
25. $8 \cdot 02 \overline{7}$.
26. $2 \cdot 0069 \dot{4}$.
27. $253089 \cdot 4864$.
[To take the square root of a fraction whose denominator is not a perfect square, reduce the fraction to a decimal, and then take the square root.].

Find the value of the following, correct to three places of decimals :
28. $\sqrt{2}$.
29. $\sqrt{3}$.
30. $\sqrt{1} \overline{0}$.
31. $\sqrt{2 \cdot 5}$.
32. $\sqrt{\cdot 07}$.
33. $\sqrt{\frac{7}{5}}$.
34. $\sqrt{\frac{5}{7}}$.
35. $\sqrt{\frac{8}{11}}$.
37. Evaluate to three places of decimals : (i) $\frac{1}{\sqrt{8}}$; (ii) $\frac{1}{\sqrt{\cdot 4}}$.
[To find the length of the side of a square, take the square root of the number of square units in the area.]
38. The area of a square field falls short of 10 acres by 439 square yards; find the length of each side.
39. Find the number of yards in the side of a square field whose area is 1 ac. 2 r. 4 p. 15 sq. yds.
40. The rent of a square allotment is £8. 3 s. $4 d$., at the rate of $8 s .4 d$. per acre ; find in yards the length of each side.
41. The cost of paving a square court with stone slabs, each 18 inches square, at $2 s .3 d$. a slab, is $£ 16.4$ s. What is the length of each side of the court?
42. The area of a square field is $12 \mathrm{ac} .3 \mathrm{r} .9 \mathrm{p} .18 \frac{3}{4} \mathrm{sq} . \mathrm{yds}$. ; find in yards the length of each side.
43. Find (to the nearest yard) the length of each side of a square field whose area is 439 ac .33 p .
44. Find (to the nearest penny) the cost of running a fence round a square field whose area is 4 acres at $1 s .6 d$. per yard.
[To find the hypotenuse of a right-angled triangle, add the squares of the lengths of the sides containing the right angle, and take the square root of the sum. See Euc. I. 47.]
45. The sides of a right-angled triangle (containing the right angle) are respectively 88 ft . and 105 ft .; find the length of its hypotenuse.
46. The side of a square is 22 p .1 yd .2 ft . ; find to the nearest foot the length of its diagonal.
[To find the mean proportional between two quantities, take the square root of their product.]

Find the mean proportional between the following numbers :
47. 1692, $2303 . \quad 48 . \quad 7056,105625 . \quad 49 . \quad 22 \cdot 09,6 \cdot 6049$.

Extract the square root of
*50. 0.00137641 . $51 . \quad 0.08450649 . \quad * 52.4774671801$.
Extract (correct to three decimal places) the square root of
*53. $8 \frac{1}{3}$.
*54. 0•144.
*55. 0.51 .
Extract (correct to four decimal places) the square root of
*56. 0.051 .
*57. 0.571.
*58. 5».
*59. Arrange $\frac{1}{0.742}, \sqrt{1.81}$, and 1.346 in order of magnitude ; and find correct to four places of decimals by how much the sum of the largest and smallest of these numbers differs from twice the other.
*60. Find to the nearest integer how many inches there are in the length of one of the sides of a square field whose area is 2 acres.
*61. A square field contains 6 ac. 2 r. $6 \frac{1}{4}$ sq. yds. ; find the length of a side in yards correct to the nearest hundredth.
*62. The sides of a rectangle are 16 feet and 10 feet respectively; find in feet, to four places of decimals, the length of the diagonal of a square of equal area.
*63. There is a square enclosure of 10 acres ; a man walks at the rate of 3 miles an hour along one side, along a diagonal, along another side, and so returns along the other diagonal to the starting point. How many minutes does this take him?

Seventeenth Week.

 Cube Root.Notes and Hints for Solution. The example worked out below exhibits a method of extracting the cube root of a number.

It is based upon the following algebraical equivalents :
(i) $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$;
(ii) $(a+b+c)^{3}=(a+b)^{3}+3(a+b)^{2} c+3(a+b) c^{2}+c^{3}$.

Example. Find the cube root of 425259008.

	$\begin{aligned} & 425,259,008 \\ & 343 \end{aligned}$	752
three times $(70)^{2}=14700$	82259	
three times $70 \times 5=1050$		
15775	78875	
three times $(750)^{2}=1687500$	3384008	
$\begin{array}{rrr} \text { three times } 750 \times 2 & = & 4500 \\ 2^{2} & = & 4 \end{array}$		
1692004	3384008	

Note. The cube root of a decimal is obtained in a similar manner, care being taken to mark off the periods of three figures each from the decimal point each way. Thus to find the cube root of $37 \cdot 1594$ and 00007 we must mark off as follows :

$$
37 \cdot 159,400 \ldots, \cdot 000,070,000 \ldots ;
$$

in these cases the cube root can of course only be found approximately. Observe that each period furnishes one digit of the root.

Examples XVII.

Find the cube root of

1. 512.
1. 1331.
1. 3375.
1. 15625 .
2. 103823.
1. 195112.
1. 438976.
1. 857375.
1. 160103007 .
2. 8615125.
1. 193100552.

Find the cube root of
12. 729 .
15. $614 \cdot 125$.
13. $4 \cdot 913$.
14. $50 \cdot 653$.
18. 000012167.
16. $64481 \cdot 201$.
17. 16.974593.
19. 0 G 0000125.
20. 2815166528.

Find the cube root of
21. $166 \frac{3}{8}$.
22. $11 \frac{32}{34} \frac{3}{3}$.
23. $190 \frac{7}{64}$.

Extract the cube root of the following, giving the results true to two places of decimals :

24.	$3 \cdot 00415$.	25.	5.	26.	7.
27.	$\frac{4}{9}$.	28.	$3 \frac{3}{4}$.	29.	$\frac{2}{7}$.
30.	$18 \frac{2}{11}$.	31.	$150 \sqrt{2}$.		

[To find the length of the edge of a cube, take the cube root of the number of cubic units in its volume.]
32. Find the edge of a cube whose volume is equal to that of a rectangular solid, of which the dimensions are 6 ft .3 in ., 2 ft .6 in ., and 1 foot.
33. Find the edge and surface of a cube whose volume is $4 \mathrm{cu} . \mathrm{ft} .1088 \mathrm{cu} . \mathrm{in}$.
34. Find the length of the edge of a cube of metal which cost £5407. 8s. $11 \frac{1}{2} d$. , one cubic inch being valued at $8 s .4 d$.
35. Find the number of square feet in the surface of a cube whose volume contains 2460375 cubic inches.
36. Find (to the nearest tenth of an inch) the dimensions of a cubical cistern capable of containing 800 gallons. [Suppose 1 gallon $=277 \cdot 25$ cubic inches.]
37. Find (to the nearest hundredth of an inch) the edge of a cubical block of lead weighing one ton, having given that 1 cubic foot of lead weighs $709 \frac{1}{2}$ lbs.
38. Find the edge of a cubical mass of brass whose weight is equal to that of a rectangular block of iron measuring 2 ft .3 in . long, 1 ft .4 in . broad, and 12 inches thick; it being given that 1 cubic foot of brass weighs 8000 ounces, and 1 cubic foot of iron weighs 7788 ounces.

Extract the cube root of

*41. Extract to the third decimal place the cube root of
(i) 0.27 .
(ii) 0.9 .
(iii) $15 \frac{2}{3}$.
*42. Shew that the square root of 0.37 exceeds the cube root of 0.217 by a difference which very nearly equals $\frac{1}{136}$.
*43. A plate of metal is 106.58 inches long, 14.6 inches wide, and 2 inches thick; supposing it to be melted and cast into an exact cube, what would be the edge of the cube ?
E.c.

D

Eighteenth Week. The Metric System of Measures and Weight.

Notes and Hints for Solution. The Metric System is so constructed as to follow the arrangement of decimal notation. This implies that, a fundamental unit having been chosen, the higher denominations are obtained by taking 10 times, 100 times, 1000 times, \ldots that unit ; while the lower denominations are respectively one-tenth, one-hundredth, one-thousandth, ... of the unit. The same principle is carried out as far as possible through all the Tables of the System.

The whole Metric System of Measures and Weight rests on the unit of length, namiely, the metre.*
N.B. The metre $=39 \cdot 37079 \ldots$ inches $=39 \frac{3}{8}$ inches $($ nearly $)$.

The higher denominations (or multiples) are the Decametre (Dm.), the Hectometre (Hm.), the Kilometre (Km.), containing respectively ten, one hundred, and one thousand metres. The lower denominations (or submultiples) are the decimetre (dm.), the centimetre (cm. .), and the millimetre (mm .), containing respectively one-tenth, one-hundredth, and one-thousandth of a metre. \dagger
In practice the terms Hectometre, Decametre, decimetre are little used.

Hence a length given in terms of metric measurements can be at once expressed in any metric denomination by use of the decimal point.

For instance : $-7 \mathrm{Km} .9 \mathrm{Dm} .4 \mathrm{~cm} .3 \mathrm{~mm} .=7090.043$ metres

$$
=7 \cdot 090043 \text { Kilometres }=7090043 \text { millimetres }
$$

N.B. 1 Kilometre $=1093 \cdot 633 \ldots$ yards $=\frac{5}{8}$ mile (nearly).

[^0]Square Measure. Taking 1 square metre as the unit, it follows that

1 square Decametre $=10^{2}$ (or 100) sq. metres,
1 square Hectometre $=100^{2}$ (or 10,000) sq. metres, and so on ; while a sq. decimetre and a sq. centimetre are respectively $\frac{{ }_{1}{ }^{1} \overline{0} \overline{0}}{}$ and $\frac{1}{10,000}$ of a square metre.

For purposes of land measurement a square Decametre is called an Are ; it follows that a Hectare (or 100 Ares) is a square Hectometre. A square metre, being $\frac{1}{100}$ Are, is called a centiare.
Thus 19 Ha. 4 Ar. 3 sq. metres (or centiares)
$=190403$ square metres
$=1904.03$ Ares $;$ and so on.
N.B. 1 sq. metre $=1550.059$ sq. inches $=1 \frac{1}{5}$ sq. yds. (nearly). 1 Hectare $=2 \cdot 4711 \ldots$ acres $=2 \frac{1}{2}$ acres (nearly).

Cubic Measure. This follows the same general principle. The cubic metre (sometimes called a stere) is the unit. The cubic Decametre is therefore 10^{3} (or 1000) cubic metres; while the cubic decimetre and cubic centimetre are respectively $\frac{1000}{1000}$ and $\frac{1}{1,000,000}$ of the cubic metre.

Capacity. The unit of capacity is the litre, namely, the capacity of one cubic decimetre. To this the prefixes Kilo-, Hecto-, Deca-, deci-, centi-, milli- are attached with their usual meaning.
N.B. 1 cubic metre $=1000$ cubic decimetres $=1$ Kilolitre.

1 litre $=61 \cdot 027 \ldots$ cub. in. $=1 \cdot 760 \ldots$ pint $=1 \frac{3}{4} \operatorname{pint}($ nearly $)$.
Weight. The unit of weight is the gramme, namely, the weight of one cubic centimetre of water (at a temperature of $4^{\circ} \mathrm{C}$.).

> 1 Kilogramme $=1000$ grammes.
> 100 Kilogrammes $=1$ Quintal. 1000 Kilogrammes $=1$ Tonneau.

It follows that 1 litre (i.e. 1000 cubic centimetres) of water weighs 1 Kilogramme;
also 1 cubic metre of water weighs 1000 Kilogrammes (or 1 tonneau).
N.B. 1 gramme $=15 \cdot 432 \ldots$ grains $=15 \frac{1}{2}$ grains (nearly).

1 Kilogramme $=2 \cdot 2046 \ldots \mathrm{lbs} .=2 \frac{1}{5} \mathrm{lbs} .($ nearly $)$.

Examples XVIII.

1. Express 5 Dm .8 m .7 cm .3 mm . in terms of (i.) metres, (ii.) centimetres, (iii.) as the decimal of a Kilometre.
2. Express 3 Km .4 Hm .9 dm .2 mm . in terms of (i.) metres, (ii.) Decametres, (iii.) decimetres.
3. In $\cdot 07801$ of a Kilometre, how many metres are there? and how many millimetres? Express this length in multiples and submultiples of a metre, affixing the proper names to each denomination.
4. In $80460 \cdot 2$ centimetres, how many Kilometres are there? and how many metres? Express this length in multiples and submultiples of the metre.
5. (i.) Add together $400 \cdot 82$ metres, 5028 centimetres, and -5489 of a Kilometre, expressing the result in the last denomination.
(ii.) From the sum of 902.03 metres, one hundred thousand millimetres, and 8 m .1 dm .9 cm. , subtract 1022 centimetres. Express the result in terms of the Kilometre.
6. Multiply (i.) 2 Km .5 Hm .1 dm .2 cm .5 mm . by 8 .
(ii.) 5 Dm .2 cm . by 42 .
7. Divide (i.) 45 Km .7 Dm .4 m .7 dm . by 9 .
(ii.) 173 Km .3 Hm .6 Dm .7 m .2 dm .7 cm . by 369.
8. Find the cost of cutting a road 12 Km .800 m . long at £51. 12s. 6d. per Kilometre.
9. Find the cost of 16 Km .64 m . of telegraph wire at $£ 3.2 s .6 \mathrm{~d}$. per Hectometre.
10. Estimate the cost of 136.75 metres of silk at 8 fr. 40 c. per metre, and give the result in terms of English money (to the nearest penny), supposing $£ 1$ sterling $=25 \cdot 25$ francs.
11. Five Kilogrammes of gold are to be divided among 110 persons ; find (to the nearest hundredth of a gramme) what weight each person should receive.
12. Express (i.) $32 \frac{1}{2}$ milligrammes as the decinal of a Kilogramme, and (ii.) $3 \frac{1}{2}$ centilitres as the decimal of 7 Hectolitres.
13. Express (i.) 748 square metres as the decimal of a square Kilometre, and (ii.) •748 Hectare in terms of square metres.
14. Express $690,420,489 \mathrm{sq} . \mathrm{cm}$. as (i.) square metres, (ii.) as Hectares; and (iii.) multiply 17 Hectares 85 centiares by 110 , giving the result in square metres.
15. The area of an allotment of ground is 4 Hectares 25 sq. metres, and its rent is 16,010 francs; at what rate is this per square metre?
16. Express in Hectares (i.) the area of a rectangular plot of ground, of which the length and breadth are respectively 805 metres and 74 metres ;
(ii.) the area of a square each side of which measures 523 m . 75 cm .
17. Find the rent of a rectangular plot of building ground measuring 750 metres by 88 metres at 1250 francs per Hectare.
18. (i.) A strip of planking is 12 m .34 cm . in length, and its area is 2 sq. m. 96 sq. dm. 16 sq. cm. ; find its breadth in centimetres.
(ii.) The area of a plot of land is 25 Hectares 965 Ares and its length is 3462 metres; find its breadth.
19. How many tiles, each measuring 15 cm . by 12 cm ., are required to pave the floor of a hall 34.8 metres long and 14.52 metres wide?
20. How many metres of paper 75 cm . wide will be required for the walls of a room whose length, breadth, and height are respectively $5 \mathrm{~m} .65 \mathrm{~cm} ., 4 \mathrm{~m} .35 \mathrm{~cm}$., and 4.5 metres?
21. How many litres are contained in cisterns whose length, breadth, and depth are respectively :

$$
\begin{aligned}
& \text { (i.) } 1 \mathrm{~m} .25 \mathrm{~cm} ., 80 \mathrm{~cm} ., \quad 70 \mathrm{~cm} \text {; ; } \\
& \text { (ii.) } 4 \mathrm{~m} .10 \mathrm{~cm} ., \quad 3 \mathrm{~m} .10 \mathrm{~cm} ., 51 \mathrm{~cm} . \text { ? }
\end{aligned}
$$

22. Express in Kilogrammes the weight of water contained in a trench whose length is 26 m .75 cm ., and breadth 1 m .10 cm ., the depth of the water being 35 cm .
23. Find the weight in Kilogrammes of a beam of fir 4 m .45 cm . long, 24 cm . broad, and 20 cm . thick ; it being given that fir weighs $\cdot 55$ times as much as an equal bulk of water.
24. How many tonneaux of earth must be excavated in digging a trench 230 metres long, 4.5 metres wide, and 80 cm . deep; it being given that the soil in question is 1.5 times as heavy as an equal volume of water?
25. A bar of silver, 25 cm . long, measures 8.2 cm . and 5.4 cm . in width and thickness respectively. Find (i.) its weight in Kilogrammes, having given that silver weighs 10.5 times its bulk of water; (ii.) its value, supposing 1 gramme of silver to be worth $1 d$. ; (iii.) the price of silver per ounce troy. [Take 1 gramme $=15 \frac{1}{2}$ grains.]
26. Find the weight per square metre of a sheet of zinc 5 mm . thick, having given that zinc weighs $7 \cdot 14$ times its bulk of water. Express the result in Kilogrammes.

Nineteenth Week. The Metric System Continued. Foreign Coinage.

Notes and Hints for Solution. We shall now give examples to illustrate methods of converting Metric Weights and Measures into the British Standard, and vice versâ. Similar questions dealing with foreign and British coinage are also provided.

In France, Belgium, and Switzerland the standard coin is the Franc, subdivided into 100 Centimes.

Italy, Greece, and (in part) Spain have adopted under different names the same coinage.

The value of the franc expressed in British currency varies with the rate of exchange ; but the following may be taken as average values :

$$
1 \text { franc }=9 \frac{1}{2} d . \text { (nearly) } ; £ 1=25 \cdot 25 \text { francs. }
$$

Information as to the currencies of other countries will be given in comection with questions relating to them.

Example 1. Find the equivalent in French money (to the nearest centime) of $£ 173.12 \mathrm{~s} .3 \mathrm{~d}$. ; the rate of exchange being $£ 1=25 \cdot 33$ francs.

$$
\begin{aligned}
& \text { £173. 12s. } 3 d .=£ 173 \cdot 6125 \text {, } \\
& \text { and £1 }=25 \cdot 33 \text { francs. } \\
& \therefore \quad £ 173.12 s .3 d .=173.6125 \times 25.33 \mathrm{fr} \text {. } \\
& =4397 \cdot 60 \text { francs. }
\end{aligned}
$$

Example 2. Find (to the nearest farthing) the equivalent in British money of $286 \cdot 14$ German marks; it being given that $£ 1=25 \cdot 28$ francs, and 100 francs $=80 \cdot 85$ marks.
[The standard coin of Germany is the mark ($=100$ pfennige); 1 mark $=11 \frac{3}{4} d$. nearly.]
Here

$$
\begin{aligned}
286 \cdot 14 \text { marks } & =100 \times \frac{286 \cdot 14}{80.85} \text { francs } \\
& =£ \frac{100 \times 286 \cdot 14}{80.85 \times 25 \cdot 28}=£ \frac{28614}{2043.888} \\
& =£ 13.9998 \ldots \\
& =£ 14 \text { (to the nearest farthing). }
\end{aligned}
$$

Example 3. Express 63 sq. metres 3 sq. dm. in square yards, square feet, and square inches (to the nearest sq. in.), having given 1 metre $=39 \cdot 37079$ inches.

Now 63 sq. metres 3 sq. dm. $=63.03$ sq. metres, and

$$
1 \cdot \text { sq. metre }=(39 \cdot 37079)^{2} \text { sq. inches. }
$$

$$
\begin{align*}
\therefore \quad 63.03 \text { sq. metres } & =(39.37079)^{2} \times 63.03 \text { sq. inches } \ldots . .(\mathrm{i} .) \\
& =1550.06 \times 63.03 \text { sq. inches } \ldots . . .(\mathrm{ii.}) \tag{ii.}\\
& =97700 \text { sq. in. } \\
& =75 \text { sq. yds. } 3 \text { sq. ft. } 68 \text { sq. in. }
\end{align*}
$$

Note. The necessary multiplication is given below. It should be noted that since $(39 \cdot 37079)^{2}$ is to be multiplied by $63 \cdot 03$, a number less than 100, it is sufficient to work out $(39 \cdot 37079)^{2}$ correct to the second decimal place, in order to get a final result true to the nearest unit.
(i.)

$39 \cdot 3.7$	0.8
$39 \cdot 37$	08
$1181 \cdot 12$	4
$354 \cdot 33$	7
$11 \cdot 81$	1
$2 \cdot 75$	6
$\cdot 03$	1
1550.05	9

(ii.) $1550 \cdot 0 \mid 6$

Examples XIX.

(Foreign Coinage.)

1. Exchange into French coinage (to the nearest centime),

$$
\begin{array}{ll}
\text { (i.) } £ 46.9 s .4 \frac{1}{2} d . ; & \text { (ii.) } £ 101.15 s .9 \frac{3}{4} d . \text {; }
\end{array}
$$

the rate of exchange being $£ 1=25 \cdot 28$ francs.
2. Find the equivalent in British currency (to the nearest farthing) at the following rates of exchange, of
(i.) $837 \cdot 63$ franes; $\quad[£ 1=25 \cdot 36$ francs.]
(ii.) 1098.44 marks. $[£ 1=20 \cdot 44$ marks.]
3. When the American dollar can exchange at $4 s .3 \cdot 8 d$. in London, and at 5.44 francs in Paris, what is the rate of exchange between London and Paris? that is, what is the value of $£ 1$ sterling in francs?
4. Find in British money (to the nearest farthing) the equivalent of 60.95 Austrian florins; it being given that $£ 1=20 \cdot 30$ francs, and 100 franes $=50 \cdot 25$ florins. [The standard coin of Austria is the florin $=100$ kreutzers; 1 florin $=1 s .11 \frac{1}{2} d$. nearly.]
5. Find in English money (to the nearest farthing) the price per lib. of tea which costs 3 fr . 50 c. per Kilogramme. [Given $\mathfrak{£} 1=25 \cdot 25 \mathrm{fr}$.; 1 Kilogr. $=2 \cdot 204 \mathrm{lbs}$.]

(Comparison of the Metric and Standard Systems.)

[In the following examples, unless otherwise stated, the requisite data are to be taken from this table:

1 metre $=39 \cdot 37079 \ldots$ inches.
1 litre $=$ the capacity of 1 culic decimetre.
1 gramme $=$ the weight of 1 cubic centimetre of water at $4^{\circ} \mathrm{C}$.
1 gallon $=277 \cdot 274 \ldots$ cubic inches.
1 gallon of water weighs 10 lbs. at $62^{\circ} \mathrm{F}$. ($10.016 \ldots$ at $4^{\circ} \mathrm{C}$.)]
6. Verify carefully the following equivalents, using, where necessary, contracted multiplication and division, and giving results correct to the second place of decimals :
(i.) 1 Kilometre $=1093 \cdot 63 \mathrm{yds} . \quad$ (ii.) 1 sq. metre $=1550.06 \mathrm{sq}$. in. (iii.) 1 Are $\quad=119 \cdot 60$ sq. yds. (iv.) 1 Hectare $=2 \cdot 47$ acres. $\left.\begin{array}{rl}\text { (v.) } 1 \mathrm{cu} . \text { metre }=35.32 \mathrm{cu} . \mathrm{ft.} \quad \text { (vi.) } 1 \text { litre } & =61.03 \mathrm{cu} . \mathrm{in} . \\ & =1.76 \text { pints. }\end{array}\right\}$ (vii.) 1 gramme $=15.43$ grains. (viii.) 1 Kilogramme $=2.21 \mathrm{lbs}$.
7. Verify the following equivalents (correct to two places of decimals) :
(i.) 1 yard $=91$ metre. (ii.) 1 mile $=1609.31$ metres.
(iii.) 1 acre $=40$ Hectare.
(v.) 1 oz . Av. $=28.35$ grammes.
(iv.) 1 gallon $=4 \cdot 54$ litres.
(vi.) 1 ton $=1016.05$ Kilogrs.
8. Find to the nearest hundredth of an inch the difference between 35 yards and 32 metres.
9. Find to the nearest yard the difference between 5 miles and 8 Kilometres.
10. By how many grains does 5 Kilogrammes differ from 11 lbs.? [1 gramme $=15 \cdot 43235$ grains.]
11. Find (to the nearest tenth of a yard) how many yards there are in 9.9 Kilometres; and express $7 \frac{1}{2}$ miles in metric measurement to the nearest centimetre.
12. Reduce 8 m .7 dm .5 cm . to yards, feet, and inches.
13. Express in square decimetres 84 sq . yds., giving your result true to the nearest unit.
14. Express the velocity five Kilometres per hour in feet per second.
15. Express the price 2 francs 80 centimes per Kilogramme in shillings per lb., having given 1 Kilogramme $=2.205 \mathrm{lbs}$. and $£ 1=25 \cdot 40$ francs.
16. Find a multiplier that will convert a number expressing metres per second into miles per hour.
17. A cubic foot of water weighs nearly 1000 oz ., and a cubic metre of water weighs 1000 Kilogrammes, also five furlongs are nearly equal to 1000 metres. Find approximately the equivalent in ounces of one Kilogramme.
18. If a Kilogramme $=2.204 \mathrm{lbs}$. Av., and a Hectolitre $=3.531$ cub. ft . ; find to the nearest gramme the weight of 5.51 litres of a substance of which 10 cub. in. weigh 1 oz . ?
19. Find in inches (to the nearest hundredth) the edge of a cubical block of granite, weighing 1200.5 Kilogrammes, the specific gravity of granite being 3.5 times that of water.
*20. An acre is 0.40467 Hectares, and a pound sterling is taken as $25 \cdot 25$ francs. An estate measuring 1927 Hectares is sold for $10,100,000$ francs. What is the selling price per acre in English money?
*21. Given that a metre $=3.2809 \mathrm{ft}$., find how many square metres there are in 1000 square yards.
*22. Given that a gallon measures $277 \cdot 274$ cubic inches, and that a litre may be represented by a cube whose edge is 3.937 inches; find correct to two places of decimals how many pints there are in a litre.
*23. How many Kilogrammes are there in 0.708624 of one ton, if 100 Kilos. are equivalent to 1.9684 cwts .
*24. Find how many metres there are in 0.581257 of one mile, having given that one metre $=1.093638$ yards.
*25. Given that a metre is 3.3708 inches longer than a yard, find which is greater, 10 square metres or 12 square yards; and express the difference as a decimal of a square metre correct to three places.
*26. A Kilometre being $1093 \cdot 633$ yards, find correct to four places of decimals how many Kilometres there are in 100 English miles.
*27. Taking a metre as $39 \cdot 37$ inches, and a gramme as $15 \cdot 43$ grains ; find the weight in grammes of a cubic metre of air, when 100 cubic inches of the air weigh 31 grains.

Twentieth Week. Percentages. Commission.

Notes and Hints for Solution. A percentage is a fraction of cne hundred; thus the term 5 per cent. means 5 in every 100 , and is equivalent to the fraction $\frac{5}{1} \frac{5}{0}$. In such a case the number 5 is called the rate per cent. The words "per cent." are briefly expressed by the symbol \% or by the letters "p.c."

Any fraction may be expressed as a percentage, and conversely.
Example 1. Express (i.) $\frac{3}{20}$ as a percentage ; (ii.) $8 \frac{1}{3}$ p.c. as a fraction in lowest terms.
(i.) $\frac{3}{20}=\frac{\frac{3}{20} \text { of } 100}{100}=\frac{15}{100}$; i.e. 15 in every 100 , or 15 p.c.
(ii.) $8 \frac{1}{3}$ p.c. is equivalent to the fraction $\frac{8 \frac{1}{3}}{100}=\frac{25}{300}=\frac{1}{12}$.

Example 2. The population of a certain district is found to have decreased by 4 per cent. ; if it was originally 4325 , what is it now?

Every 100 has become $100-4$, or 96 ;
\therefore the present population is 96 p.c. of the former population; that is, the present population $=\frac{96}{100}$ of $4325=4152$.

Commission is a charge due to an agent for conducting a business transaction, and is calculated as a percentage on the money spent in the transaction. Another common form of percentage is the premium paid on a sum of money for insurance of life or property.

Example 3. For what sum should goods worth $£ 573$ be insured at $4 \frac{1}{2}$ p.c., so that in case of loss the owner may recover the value of the goods and premium?

If $£ 100$ were insured it would cover the value of goods worth $£ 95 \frac{1}{2}$, together with the premium $£ 4 \frac{1}{2}$;
\therefore the sum to insure goods worth $£ 573=£ 100 \times \frac{573}{95 \frac{1}{2}}=£ 600$.

Examples XX.

Find, in lowest terms, the fraction equivalent to

1. $3 \frac{1}{2}$ per cent.
2. $4 \frac{4}{9}$ per cent.
3. $5^{\frac{3}{5}}$ per cent.
4. 6.25 per cent.
5. $5 \cdot 625$ per cent.
6. $5 \frac{1}{7}$ per cent.

Find the percentage expressed by the following fractions:
7. $\frac{2}{5}$.
8. '3.
9. $\frac{27}{200}$.
10. $\frac{3}{40}$.
11. 375 .
12. Increase $£ 66.13 s .4 d$. by (i.) 5%; (ii.) 4%; (iii.) $7 \frac{1}{2} \%$.
13. What is a man's income if after losing $22 \frac{1}{2} \%$ of it he has £186 left?
14. The population of a certain district increased from 23,000 to 24,380 ; what was the rate per cent. of increase?
15. A man whose annual income is $£ 1275$ spends 68 per cent. of it ; what does he save?
16. What must be paid to insure a cargo valued at $£ 8350$ at $4 \frac{1}{5}$ per cent.?
17. What is an agent's commission on $£ 6.13 s .4 d$. at $3 \frac{1}{8}$ per cent. ?
18. Of the trees in an orchard 50 per cent. are apples, 25 per cent. pear trees, $16 \frac{2}{3}$ per cent. plum trees, and there are fifty cherry trees; how many trees are there altogether?
19. For what sum should a cargo worth $£ 7400$ be insured at $7 \frac{1}{2}$ per cent., so that in case of loss the owner may recover both cargo and premium ?
20. A man receives 4 per cent. on one-third of his capital, $4 \frac{1}{2}$ per cent. on one-sixth, and 5 per cent. on the remainder; what percentage does he receive on the whole?
21. A merchant gains 30 per cent. on one-third of his capital, 45 per cent. on one-fourth, and loses 15 per cent. on the remainder; what is his gain per cent. on the whole capital?
22. A man embarks his whole capital in four successive ventures; in the first he clears 100 per cent., and in each of the others loses 20 per cent; shew that he has gained 2.4 per cent. on his original capital.
23. Find the amount of a bill for 864 yds . of linen at $2 s .1 \mathrm{~d}$. per yd., 520 yds . of cloth at $1 s$. $3 d$. per yd., and 280 yds . of silk at $16 s .9 d$. per yd., deducting $7 \frac{1}{2}$ per cent. for ready money.
24. In an examination in which the full marks were $6000, A$'s marks exceeded B 's by 12 per cent., B obtained 16 per cent. more than C, and $C 20$ per cent. more than D; if A got 4872 , find what percentage of the maximum were obtained by D.
*25. A certain number of persons ventured equal shares in a business so as to make up a total capital of $£ 1719$. 8s. 4d. The first dividend was $7 \frac{1}{2}$ per cent. upon the capital, and amounted to £2. 14s. $10 \frac{1}{2} d$. per share. What was the number of shares?

[^1]
Twenty-First Week.

Profit and Loss.
Notes and Hints for Solution. In working examples under this head it must be remembered that Profit or Loss, expressed as a percentage, always means a percentage reckoned on the Cost Price.

Example 1. An article bought for $25 s$. is sold for $£ 1.6 s .10 \frac{1}{2} d$.; what is the gain per cent.?

Here $1 s .10 \frac{1}{2} d$., or $1 \frac{7}{8} s$., is the gain on the cost price, $25 s$.; we have therefore to express $\frac{1 \frac{7}{8}}{25}$ as a percentage.

Now

$$
\frac{1 \frac{7}{8}}{25}=\frac{1 \frac{7}{8} \times 4}{100}=\frac{7 \frac{1}{2}}{100}
$$

$\therefore \quad$ the gain is $7 \frac{1}{2}$ p.c.
Example 2. If an article which cost 12 s .6 d . is sold at a loss of 4 per cent., what is the selling price ?

Since the loss is 4 p.c. of the cost price, \therefore the selling price is 96 p.c. of the cost price; that is, the required selling price $=\frac{96}{100}$ of $12 \frac{1}{2} s .=12 s$.

Example 3. By selling goods for $£ 48$ a profit of 20 per cent. is made. What did the goods cost ?

Here the given selling price is 120 p.c. of the required cost price ; that is, $£ 48=\frac{120}{100}$ of the cost price
$=\frac{6}{5}$ of the cost price ;
\therefore the required cost price $=\frac{5}{6}$ of $£ 48=£ 40$.
Example 4. By selling a horse for $£ 68$ I lose 15 per cent.; at what price must it be sold to gain 10 per cent.?

When the horse is sold for $£ 68$, the selling price is 85 p.c. of the cost price; and to gain 10 p.c. the selling price must be 110 p.c. of the cost price ;
$\therefore \quad$ the required price $=£ 68 \times \frac{110}{85}=£ 88$.
Example 5. A man, having bought a cottage, sold it at a loss of 5 p.c. Had he been able to sell it at a gain of 7 p.c., it would have fetched £24. 18s. more than it did. What was the cost price?

Here the 1st selling price $=95$ p.c. of the cost price; and the 2nd selling price $=107$ p.c. of the cost price.

Thus the difference between the selling prices $=12$ p.c. of the cost price ; that is,
£24. $18 s_{s}=\frac{12}{100}$ of the cost price ;
\therefore the cost price $=\frac{100}{12}$ of $£ 24.188 .=£ 207.10 \%$.

Examples XXI.

1. If I buy an article for $10 s .6 d$. and sell it for $14 s$., what is my gain per cent.?
2. Goods are sold for £264. 5s. $3 d$. , at a gain of $£ 11.2$ s. 9 d.; find the gain per cent.
3. What is the gain or loss per cent. on groceries retailed at $5 \frac{3}{4} d$. per lb., and costing $£ 2.7 s .11 d$. per cwt. ?
4. If melons are bought at $£ 1.2 s .11 d$. a score, and sold at 17 s . 5 d . a dozen, what is the profit per cent. on the outlay?
5. If a publisher gains $£ 200$ in selling 12000 shilling copies of a book, what is his gain per cent.?
6. If an article which costs $£ 25$ is sold at a loss of $12 \frac{1}{2}$ per cent., what does it sell for?
7. At what price must an article costing $£ 37.10$ s. be sold so as to gain 8 per cent. ?
8. By selling goods for $£ 17.4$ s. a profit of $7 \frac{1}{2}$ per cent. is made; find the cost price.
9. A draper sells 150 yards of cloth at $8 s .9 d$. per yard, gaining thereby 25 p.c. What did he pay for the whole?
10. What was the cost price of goods which are sold for £95. 3 s. $3 \frac{3}{4} d$., at a profit of $5 \frac{1}{4}$ p.c. ?
11. By selling apples at 3 a penny 5 per cent. is gained; find the loss or gain per cent. when they are sold at 25 for sixpence.
12. By selling tobacco at $1 s .3 d$. per lb . a man gains 35 per cent.; what does his profit amount to on the sale of 4 cwt. 11 lbs.?
13. A bookseller's profit is $\frac{3}{13}$ of his selling price ; find his gain per cent. ; also his profit on 260 copies of a book sold for 7 s .6 d .
14. If $17 \frac{1}{2}$ per cent. be lost by selling an article at $8 s .3 d$. , at what price should it have been sold to secure a gain of 40 per cent.?
15. By disposing of goods for $£ 364$ a man loses 9 per cent., what should have been the selling price in order to have made a profit of 7 per cent.?
16. If by selling an article at $5 s .6 d$. I gain $\frac{3}{8}$ of my outlay, what should I have gained per cent. if I had sold it for $6 s .6 d$.?
17. By selling tea at $2 s .8 d$. per lb. a merchant gains $\frac{1}{8}$ of his outlay ; he then raises the price to $3 s .1 d$. per 1 lb . What does he gain per cent. on the prime cost ?
18. What percentage of loss or gain will result from selling cloth at $7 s .9 d$. per yard, if 5 per cent. is gained by selling it at $8 s .9 d$. per yard?
19. Sugar is bought at $£ 25$ per ton ; refining costs $£ 1.1$ s. $8 d$. per cwt.; it is sold at $5 \frac{1}{2} d$. per lb. What is the gain per cent.?
20. A person bought a horse and sold it at a loss of 10 per cent. ; if he had received $£ 9$ more he would have gained $12 \frac{1}{2}$ per cent.; what did the horse cost him?
21. If 3 per cent. more be gained by selling a horse for $£ 83.5 s$. than by selling him for $£ 81$, what was the original price ?
22. An article of commerce passes successively through the hands of three dealers, each of whom in selling adds as his profit 10 per cent. of the price at which he bought it. What did the first dealer pay for goods which the third dealer sells for $£ 11.1 \mathrm{~s} .10 \mathrm{~d}$.?
23. A buys a cask of wine and sells it to B at a profit of 5 per cent., B sells it to C at a profit of 5 per cent., C sells it to D for £49. $12 s .3 d$., making a profit of $12 \frac{1}{2}$ per cent.; what did the wine cost A ?
*24. A builder sold a house for $£ 945$, thereby gaining 8 per cent. on his outlay ; what did it cost him to build it?

If the purchaser lets the house at $£ 70$ a year, find how much per cent. per annum he makes on the purchase money.
*25. Two-parts of chicory, costing £1. $9 s .9 d$. per cwt., are mixed with 5 parts of coffee, costing £8. $4 s .6 d$. per cwt.; the mixture is sold at $1 s .4 d$. per pound ; find the profit per cent.
*26. One kind of tea is sold at $3 s$. a pound, and the profit is 20 per cent. ; another kind costs $2 s .8 d$. a pound. If 4 pounds of the former are mixed with 5 pounds of the latter, and the mixture is sold at $3 s .4 d$. a pound, what is the profit per cent.?
*27. A shopkeeper marks his goods with a price from which he can deduct $7 \frac{1}{2}$ per cent. for prompt payment, and still have a profit of 10 per cent. on what the goods cost him. Find the cost price of an article which he marks at $£ 2.15$ s.
*28. A publisher sells books to a retail dealer at 5s. a copy, but allows 25 copies to count as 24 ; if the retailer sells each of the 25 copies at $6 s .9 d$. , what profit per cent. does he make ?
*29. A quantity of ore containing 23 per cent. of copper is bought at 9.3 . per cwt. ; 95 per cent. of the copper is extracted at a cost of $2 s .10 \frac{1}{2} d$. per cwt. of ore; find the price per ton at which the copper must be sold if a profit of 15 per cent. is to be made.
*30. A man sells 10 cwt. of sugar at $2 \frac{3}{4} d$. per pound, thereby gaining 11 s .8 d .; what is his profit per cent.?

Twenty-Second Week. Inwoices and Estimates.

Notes and Hints for Solution. The following example will explain the way in which Invoices are usually made out.

		£.	$\stackrel{s}{ }$	
July 12th	$9 \frac{1}{2}$ yds. flannel at $1 / 4$ per yd.,- $5 \frac{1}{2}$ doz. buttons at $3 \frac{1}{d}$ d. per doz.,		12 1	8
" "	26 yds. calico at $1 / 8 \frac{1}{2}$ per yd.,.'	2	4	5
Sept. 10th	6 prs. socks at 1/9 per pr., -		10	6
Oct. 27th	23 yds. muslin at $3 / 4{ }^{3}$ per yd .,	3	18	$1 \frac{1}{4}$
	$18 \mathrm{yds}$. linen at 2/8 per yd., -	2	8	
Nov. 10th	$2 \frac{1}{2}$ doz. collars at $7 / 6$ per doz.,		18	9
		10	13	111

Each of the separate charges should be made out correct to the nearest farthing.
Thus, in the second line above, we write $1 s .6 d$. instead of the exact value $1 s .5 \frac{7}{8} d$.

Examples XXII.

Make out an invoice for each of the following sets of articles, supplying names and dates:

1. 12 yds . of muslin at $5 \frac{1}{2} d$. per yd.; 9 yds . of flannel at 1 s. $11 \frac{3}{4} d$. per yd.; 3 pairs of gloves at $2 s$. $11 \frac{1}{2} d$. per pair ; 4 pairs of stockings at $2 s .3 d$. per pair ; 8 handkerchiefs at $16 s$. per dozen.
2. 10 lbs . of sugar at $2 \frac{1}{2} d$. per lb. ; 24 lbs. ditto at $3 \frac{1}{2} d$. per lb. ; 6 lbs. of cocoa at $1 \mathrm{~s} .2 d$. per lb. ; 5 lbs. of raisins at $7 \frac{1}{2} d$. per lb. ; 8 bananas at 1 s .3 d . per doz. ; 5 lbs. of apples at $2 \frac{1}{2} d$. per $\mathrm{lb} . ; 30$ oranges at $8 d$. per doz.; 5 lbs . of biscuits at $7 \frac{1}{2} d$. per 1 lb .
3. 20 tumblers at $16 s$. per dozen ; ' 2 dozen wine glasses at 13 s . per dozen ; 6 water bottles at 4s. $3 d$. each; set of 3 jugs at $1 s .3 d$. , $1 s .6 d ., 1 s .9 d$. each ; 4 candlesticks at $11 \frac{1}{2} d$. each; 4 dishes at $1 s .9 d$. each ; 4 ditto at $1 s .3 d$. each; 1 tea service at 38 s.

Deduct 5 per cent. for cash payment.
4. $3 \frac{1}{2}$ dozen stockings at 8 s. 4 d. per doz. ; 2 gross of buttons at $34 d$. per doz.; $15 \frac{1}{2}$ yds. of velvet at $1 s .11 \frac{1}{2} d$. a yd.; $13 \frac{1}{2}$ yds. of flannel at $3 s .4 d$. a yd.; 12 pairs of gloves at $1 s$. 9 d . per pair; 171 yds. of silk at 11 s. $7 \frac{1}{2} d$. a yd.; $1 \frac{1}{2}$ yds. of ribbon at $8 \frac{1}{2} d$. a yd.
5. 37 yds. of Brussels carpet at $4 s .3 d$. a yd.; $18 \frac{3}{4} \mathrm{sq}$. yds. of linoleum at $3 s$. a yd.; $7 \frac{1}{2}$ yds. of matting at $2 s .6 d$. a yd.; $6 \frac{1}{2}$ sq. yds. of floorcloth at $3 s .9 d$. a yd.; 10 yds . of binding at $1 \frac{1}{2} d$. a yd.; 24 yds. of Axminster carpet at $6 s .6 d$. a yd.
6. 3 Cashmere vests at $2 s .9 d$. ; 8 shirts at 7s. 11d.; 4 Cardigan jackets at $5 s .4 d . ; 6$ jerseys at $3 s .9 d$.; 8 pairs of golf hose at $2 s$. $7 \frac{1}{2} d$. a pair ; 4 pairs of knitted gloves at $1 s .9 \mathrm{~d}$. a pair ; 3 ditto at $2 s .3 d$.; 8 cravats at 2 s . 6 d . per doz.; 1 gross of buttons at $3 \frac{1}{4} \mathrm{~d}$. a doz. ; packing case, 10 d. ; carriage, 28.6 d .
7. A courtyard 15 yds. by 12 yds . is to be paved with pebbles at 3s. per sq. yd., except two footpaths at right angles to the sides each 4 ft . broad, which meet in the centre, forming a cross. These are to be laid in paving stone at $3 s .3 d$. per sq. yd. Find the cost of the whole to the nearest penny.
8. A publisher in disposing of books to the retail bookseller charges for 25 copies as 24 and accepts 30 per cent. less than the selling price, and upon the whole receipts takes 10 per cent. commission for himself, it being agreed that the cost of production is to be borne by the author. If a book selling at $5 s$. costs $1 s$. for paper and printing, $5 \frac{1}{2} d$. for binding, and $2 \frac{1}{2} d$. for advertisements and other expenses; and if the bookseller allows a discount of $3 d$. in the $1 s$, what will be the profit made respectively by author, publisher, and bookseller on an edition of 10,000 copies?
*9. 1 cwt. of indigo at $14 s .6 d$. per 1 lb .; 1 ton of cloves at $1 s .2 d$. per lb. ; 5 cwt. 3 qrs. 18 lbs . spelter at $4 \frac{1}{2} d$. per lb. ; 7 cwt. 1 qr. 14 lbs. block tin at $£ 64$ per ton.

Deduct 10 per cent. discount for cash.
*10. Make out the following contractor's bill :
300,000 bricks at 358 . per 1000 .
240 tons lime at 25 s . per ton.
670 yards gravel at $12 s$. $6 d$. per yard.
250 yards sand at 17 s . 6 c . per yard.
Cartage : lime 1s. 6d. per ton, gravel and sand $9 d$. per yd.
Deduct 5 per cent. discount.
*11. In building a wall 22,500 bricks are used at $£ 1$. 12 s . a thousand, 135 bushels of lime at 1 s . $4 \frac{1}{2} d$. a bushel, $16 \frac{1}{2}$ loads of sand at $3 s .6 d$. a load; the labour is reckoned at $9 s .6 d$. per thousand bricks laid; and 300 coping stones are used at 1 s . $7 \frac{1}{2} d$. a piece, including cost of laying. Make out the above in the form of a bill, and find the amount after deducting $7 \frac{1}{2}$ per cent. for prompt payment.

Twenty-Third Week. Simple Interest.

Notes and Hints for Solution. Interest is the name given to money paid for the use of money lent. The sum lent is called the Principal, and the number of pounds paid in consideration of every $£ 100$ of the loan is called the Rate per cent. The principal together with its interest for any time is called the Amount. When the interest is paid on the original principal only and is not used to increase the principal, it is called Simple Interest.

Case I. To find the simple interest when the principal, rate per cent., and time are given.

Example 1. Find the Simple Interest on $£ 350$ for 4 years at 3 p.c. per annum.

The interest for 1 year $:=3$ p.c. of $£ 350=£ 350 \times \frac{3}{100}$;
\therefore the interest for 4 years $=£ 350 \times \frac{3}{100} \times 4=£ 42$.
Thus we easily obtain the rule : Multiply the principal by the rate per cent. and by the number of years, and divide the product by 100. The application of this rule is illustrated in the following examples.

Example 2. Find to the nearest penny the Simple Interest on £227. 10\%. $6 d$. (i.) for 5 years at $3 \frac{1}{2}$ per cent.; (ii.) for 4 years 7 months at $2 \frac{2}{5}$ per cent.
(i.) The required interest
$=£ 227.10$ s. $6 \mathrm{~d} . \times 5 \times \frac{3 \frac{1}{2}}{100}$.

$£$. 227 10	
113712	

$341217 \quad 6$
$56816 \quad 3$
$39,8113 \quad 9$
20
16,33
12
4,05
\therefore Interest $=£ 39.16 s .4 d$. E.C.
(ii.) The required interest

$$
\begin{aligned}
& =£ 227.525 \times 4 \frac{7}{12} \times 2 \frac{2}{5} \div 100 \\
& =£ 227.525 \times \frac{55}{12} \times \frac{12}{5} \times \frac{1}{10} \overline{0} \\
& =£ 2.27525 \times 11 \\
& =£ 25.028 \text { (correct to } 3 \\
& \quad \text { (ecimal places) }
\end{aligned}
$$

$$
=£ 25.0 \mathrm{~s} .7 \mathrm{~d} .
$$

(correct to the nearest penny).

Example 3. Find to the nearest penny the Amount of £512. 4s.6 d , at 3 per cent. Simple Interest from March 15th to Sept. 14th.

The number of clays is 183, since it is customary to include one only of the dates mentioned ; and the interest on $£ 512 \cdot 225$ for 183 days

$$
\begin{aligned}
& =£ 512.225 \times \frac{3}{100} \times \frac{183}{65} \\
& =£ 512 \cdot 225 \times \frac{3 \times 366}{73000} \\
& =\frac{£ 512.225 \times 1 \cdot 098}{73} \\
& =\frac{£ 562 \cdot 423}{73}=£ 7.7044 . . \\
& =£ 7.14 \mathrm{~s} .1 \mathrm{~d} .
\end{aligned}
$$

Thus the Amount is $£ 512.4 \mathrm{~s} .6 \mathrm{~d} .+£ 7.14 \mathrm{~s} .1 \mathrm{~d} .=£ 519.18 \mathrm{~s} .7 \mathrm{~d}$.

Examples XXIII.

Find the Simple Interest on

Find, to the nearest penny, the Amount of
11. $£ 257$ for $5 \frac{1}{2}$ years at $2 \frac{3}{4}$ per cent.
12. £63. 5 s. 9 d. , , $10 \frac{1}{2}$,,
,, $3 \frac{1}{4}$,,
13. £305. 2s. $1 d$. ,, $3 \frac{1}{4}$,,
,, 4
14. £146. 12s.2d. ,, 225 days
.. $2 \frac{1}{2}$,,
15. £30. $8 s .4 d$. ,, 234
,, 5
16. £820. 4 s. $2 d$. ,, 2 years 146 days ,, $2 \frac{1}{2}$
17. $£ 219$ from January 1 st to July 16 th at $3 \frac{1}{3}$ per cent.
18. £252. $1 s .8$. from June 13 th to August 25 th at 3 per cent.
19. £1368. $15 s$. from May 17 th to Dec. 15 th at $4 \frac{3}{4}$ per cent.

Twenty-Fourth Week. Simple Interest Continued.

Notes and Hints for Solution. In questions on Simple Interest we are concerned with four quantities, viz. principal, rate per cent., number of years, and interest. If any three of these are given we can find the fourth. Case I. has been discussed in the last section.

Case II. To find the time when the principal, interest, and rate per cent. are given.

Example 1. In what time will $£ 1250.12$ s. 6 d . amount to £1375. 13s. 9 d. at 4 p.c. per annum?

The req. no. of yrs. $=\frac{\text { whole interest }}{\text { interest for one year }}$.
Now the whole interest $=£ 1375.13 \mathrm{~s} .9 \mathrm{~d} .-£ 1250.12 \mathrm{~s} .6 \mathrm{~d}$.

$$
=£ 125.1 s .3 d .=£ 125 \frac{5}{80} ;
$$

and int. for $1 \mathrm{yr} .=£ 1250 \frac{2}{4} \frac{5}{0} \times \frac{4}{100}=£ 50 \frac{1}{40}$;
$\therefore \quad$ req. no. of yrs. $=125 \frac{5}{80} \div 50 \frac{1}{40}=2 \frac{1}{2}$.

Case III. To find the rate per cent. when the principal, interest, and time are given.

Example 2. At what rate per cent. will the Simple Interest on £422. 10\%. for 3 years be £47. 10 s. $7 \frac{1}{2} d$. ?

The req. rate per cent. $=\frac{\text { whole interest }}{\text { interest at one per cent. }}$.
Now the whole interest $=£ 47 \frac{85}{160}=£ 47 \frac{17}{3} \frac{7}{2}$;
and int. at 1 p.c. $=£ 422 \frac{1}{2} \times \frac{1}{100} \times 3 ;$
\therefore req. rate p.c. $=47 \frac{17}{32} \div \frac{845 \times 3}{2 \times 100}$

$$
=\frac{1521}{32} \times \frac{2 \times 100}{3 \times 845}=3 \frac{3}{4} .
$$

Case IV. To find the principal when the interest, rate per cent., and time are given.

Example 3. What principal will produce £114. 3s. 9 d . as Simple Interest for $7 \frac{1}{4}$ years at $3 \frac{1}{2}$ per cent.?

Under the given conditions,

$$
\mathfrak{£ 1 0 0} \text { gives as interest } \mathfrak{f}^{\frac{29}{4}} \times \frac{7}{2} .
$$

Hence interest $£ \frac{29}{4} \times \frac{7}{2}$ is derived from principal $£ 100$;
\therefore interest $£ 114 \frac{3}{16} \quad, \quad \quad, \quad$ principal $£ 100 \times \frac{\frac{1827}{16}}{\frac{29}{4} \times \frac{7}{2}} ;$
that is, the required principal $=£ 100 \times \frac{18}{16} \frac{2}{6} \times \frac{4}{29} \times \frac{2}{7}$
:=£450.

Example 4. What principal will amount to $£ 1865.12$ s. 6 d . in $6 \frac{1}{2}$ years at $3 \frac{3}{4}$ per cent.?

Under the given conditions

$$
£ 100 \text { amounts to } £ 100+£\left(\frac{13}{2} \times \frac{15}{4}\right) \text {, or } £ \frac{995}{8} .
$$

Hence an amount $£ \frac{995}{8}$ corresponds to a principal $£ 100$;

$$
\text { amount } £ 1865 \frac{5}{8} \quad, \quad, \quad \text { principal } £ 100 \times \frac{1865 \frac{5}{8}}{\frac{995}{8}} \text {; }
$$

$$
\text { that is, required principal }=£ 100 \times \frac{14925}{995}=£ 1500 .
$$

Examples XXIV.

For what time would the simple interest on

1. $£ 750$
be $£ 375$
at 5 per cent. per annum?
2. £333. 6.s. $8 d$.
,, £67. 10 s.
,, $2^{\frac{1}{4}}$,,
3. £3756 , £633. 16s. 6d.,, $4 \frac{1}{2}$,,
4. £1500 ,, £365. 12s. 6d.,, $3^{\frac{3}{4}}$,,
5. In what time will $£ 3100$ amount to $£ 33 S 4$. $3 s, 4 d$. at $3 \frac{1}{3}$ per cent. per annum?
6. In how many days will £2187. 10s. amount to £2243. 5 s. $7 \frac{1}{2} d$. at $4 \frac{1}{4}$ per cent. per annum?
7. In how many days will the interest on $£ 1572.17 \% .6 \mathrm{~d}$. come to $£ 23.14 s .0 \frac{1}{4} d$. at $5 \frac{1}{2}$ per cent. per annum ?
8. In what time will a sum of money double itself at $4 \frac{1}{6}$ per cent. simple interest?

At what rate per cent. would the simple interest on
9. £1225 be $£ 192.18 \mathrm{~s} .9 \mathrm{~d}$. for 3 years ?
10. £3725. 15s. ,, £434. 13s. 5d. ,, $3 \frac{1}{2}$ years?
11. £3643. 6 s. $8 d$.,, £605. 14s. $1 d$. ,, $4 \frac{3}{4}$ years ?
12. £980 ,, £178. 8s. 10d. ,, 3 years 2 months?
13. If the interest on $£ 650$ for 5 months is $£ 12$. 3 s. 9 d., what is the rate per cent.?
14. At what rate per cent. will £514. 78. 6d. amount to £694. 8s. $1 \frac{1}{2} d$. in $7 \frac{1}{2}$ years?
15. What is the rate of simple interest when $£ 868.0$ s. $3 d$. amounts to $£ 1012.13 \mathrm{~s}$. $7 \frac{1}{2} d$. in 5 years 4 months ?
16. The sum of $£ 437.10 w$. was lent at simple interest, and at the end of two-thirds of a year the debt was cancelled by the payment of $£ 449.3 \mathrm{~s} .4 \mathrm{~d}$. What was the rate of interest?
17. At what rate per cent. will a sum of money treble itsclf at simple interest in 25 years?
18. What sum will amount to $£ 470.8$ s. $10 \frac{3}{4} d$. in 4 years at $2 \frac{1}{2}$ per cent.?
19. On what principal will the interest at 4 per cent. in 3 years come to $£ 33$. 3 s. $3 d$.?
20. What principal will amount to $£ 1751.16 s$ s. $10 \frac{1}{2} d$. in $3 \frac{1}{2}$ years at $4 \frac{1}{4}$ per cent.?
21. What sum of money must be put out at $2 \frac{2}{5}$ per cent. for $2 \frac{1}{2}$ years to produce £98. 4 s . $6 \dot{d}$. interest?
22. What sum will amount to $£ 393.19 \mathrm{~s} .9 \mathrm{~d}$. at 4 per cent. in 292 days?
23. What sum of money put out at 3 per cent. from July 14th to Sept. 25 th will amount to $£ 253$. 11s. 11d.?
24. What principal will give the same interest in 4 months at 3 per cent. per annum as $£ 312$. 10 s. will give in 8 months at $4 \frac{1}{2}$ per cent. per annum?

Twenty-fifth Week. Compound Interest.

Notes and Hints for Solution. Money is said to be put out at Compound Interest when each instalment of interest as it becomes due is added to the principal instead of being paid over to the lender of the principal sum. In this case the principal is continualiy being increased, and the interest for each period is the interest on the Amount at the end of the preceding period. Thus, if $£ 100$ is put out at 5 per cent. compound interest, at the end of one year the amount is $£ 105$; this is the principal for the second year, and the interest on it is found to be £5. $5 s$. ; thus the principal for the third year is £110. 5s., and so on. It follows that under this system the interest for each period must be separately calculated, the complete Compound Interest being the sum of the interests for the several periods; though this is most conveniently obtained by subtracting the original principal from the final amount. Unless otherwise stated, interest is supposed to be payable yearly.

Example 1. Find the Compound Interest on £273. 12s. for 3 years at 4 per cent. to the nearest penny.

£	
$273 \cdot 6$	1st principal
10.944	1st year's interest
284.544	2nd principal
$11 \cdot 38176$	2nd year's interest
295.92576	3rd principal
11.83703	3rd year's interest
307.76279	Amount in 3 years
$273 \cdot 6$	Original principal
$\begin{array}{r} 34 \cdot 163 \\ 20 \end{array}$	Interest required
$3 \cdot 26$	
12	
$3 \cdot 12$	

Compound Interest=£34. 3s. 3 d .

We first express the principal as the decimal of a pound. To multiply this by $\frac{4}{100}$, we multiply the principal by 4 and set down each figure two places to the right, the position of the decimal point remaining fixed. Each year's principal is treated in the same way. Lastly, the original principal is subtracted from the final amount.

To obtain an answer correct to the nearest penny it is only necessary to secure accuracy to three decimal places in the final result. Thus we retain fire decimal figures throughout the work. [See page 9.]

Example 2. Find the amount at Compound Interest of £157. 16s. 6 d . in 2 years at 5 per cent. per annum, interest payable half-yearly.

Here interest is to be allowed for 4 periods at $2 \frac{1}{2} \%$ per period.

£	
157.825	
$3 \cdot 15650)$	Interest for 1st
78912)	half-year.
$161 \cdot 77062$	
3•23541)	Interest for 2nd
80885	half-year.
165.81488	
3.316 30)	Interest for 3rd
-829 07 ${ }^{\text {3 }}$	half-year.
$169 \cdot 96025$	
3.39920)	Interest for 4th
84980)	half-year.
174*20925	

Amount $=£ 174 \cdot 209=£ 174.4 \mathrm{~s} .2 d$.

We first decimalize the principal as in Example 1. To find the interest for the first period we have to multiply the principal by $\frac{2 \frac{1}{2}}{100}$, that is, by $\frac{2}{100}+\frac{1}{200}$. For the first step of work we multiply by 2 , setting down each figure two places to the right. For the second step we take $\frac{1}{2}$ of the principal after mental division by 100 . Each half-year's principal is treated in the same way.

Example 3. What principal will amount to $£ 171.15 \mathrm{~s} .10 \mathrm{~d}$. in 3 years at 4% Compound Interest?

Here principal £100 in 1 year at 4% amounts. to $£ 104$;
\therefore the amount at the end of any year is found by multiplying the principal at the beginning of that year by $\frac{104}{100}$, or 1.04 .
\therefore the amount at the end of 3 years $=$ principal $\times(1.04)^{3}$.
Thus to find the principal we must divide the amount by $(1 \cdot 04)^{3}$.
$1 \cdot 04$

$\frac{416}{}$	$=\frac{4}{10} \overline{0}$ of 1.04
$1 \cdot 0816$	$=1.04$ of $1.04=(1.04)^{2}$
$\frac{43264}{}$	$=\frac{4}{100}$ of 1.0816
$1 \cdot 124864$	$=1.04$ of $(1.04)^{2}=(1.04)^{3}$

Thus the required principal

$$
\begin{aligned}
& =£ \frac{171 \cdot 7917}{1 \cdot 124864} \\
& =£ 152 \cdot 722 \ldots \\
& =£ 152.14 \mathrm{~s} .5 \mathrm{~d} .
\end{aligned}
$$

£171. 15s. $10 \mathrm{~d} .=£ 171 \cdot 7917$.

$1 \cdot 1,2,4,8,6,4)$| $171 \cdot 7917(152 \cdot 722$ |
| :---: |
| |
| 1124864 |
| 593053 |
| $\frac{562432}{30621}$ |
| $\underline{22497}$ |
| 8124 |
| $\underline{7874}$ |
| 250 |
| $\underline{225}$ |
| 25 |
| $\underline{22}$ |.

Examples XXV.

Find to the nearest penny the amount at Compound Interest on

1. £225 for 2 yrs. at 4%. 2. £3000. 15s. for 2 yrs. at 4%.
2. £1000 for 3 yrs . at 5%. 4. £415 for 3 yrs . at 6%.
3. £350. 12s. 6 d . for 5 yrs . at 4%. 6. £3546 for 3 yrs . at 5%.

Find to the nearest penny the Compound Interest on
7. £1256. 10 s. for 2 yrs . at $3 \frac{1}{2} \%$. 8. $£ 4500$ for 2 yrs . at $4 \frac{1}{4} \%$.
9. £745. 10 s. for 2 yrs . at $3 \frac{1}{5} \%$. 10. £ 1485 for 3 yrs . at $5 \frac{1}{4} \%$.
11. £5016. 11... 6 d . for 2 yrs. at $4 \frac{1}{2} \%$.
12. £1601. 4s. 8cl. for 3 grs . at $3 \frac{1}{4} \%$.
[To find the Compound Interest on a sum of money for $3 \frac{1}{2}$ yeurs at $2 \frac{1}{2} \%$, calculate the amount for the first three years as in former examples, then consider the $\frac{1}{2}$ year as a complete period for which the rate of interest is $\frac{1}{2}$ of $2 \frac{1}{2} \%$, or $1 \frac{1}{4} \%$.]

Find to the nearest penny the Compound Interest on
13. $£ 3600$ for $3 \frac{1}{2}$ yrs. at $2 \frac{1}{2} \%$.
14. £8457. 148 s. $6 d$. for $2 \frac{1}{4}$ yrs. at $1 \frac{1}{4} \%$.
15. £504. 13 s . 9 d . for 2 yrs. 4 mos . at $4 \frac{1}{2} \%$.
16. Find to the nearest penny the amount of $£ 390.15 s$. in $1 \frac{1}{2}$ years at 4% Compound Interest, payable half-yearly.
17. Find to the nearest penny the Compound Interest on $£ 425$ for 2 years at 6%, payable half-yearly.
18. If interest be payable half-yearly, find the Compound Interest on $£ 410$ for $2 \frac{1}{2}$ years at $4 \frac{1}{2} \%$.
19. What sum at 4% Compound Interest will amount to £3515. 4 s . in 3 years?
20. What sum at 5% Compound Interest will amount to f264. 12s. in 2 years?
21. Find the principal which will amount to $£ 810$. $6 s$. $9 d$. in 4 years at 5% Compound Interest.
22. What sum must be put out at Compound Interest at 8 per cent. per annum, payable half-yearly, so as to amount to $£ 3661.13$ s. $4 d$. in $1 \frac{1}{2}$ years?
23. What principal, lent out at Compound Interest for 2 years at $5 \frac{1}{10} \%$, will amount to $£ 4602.10 \mathrm{~s} .1 \mathrm{~d}$. ?

Twenty-Sixth Week. Present Worth and Discount.

Notes and Hints for Solution. Suppose A owes B a sum of $£ 102$, payment being due in six months' time, and that money is worth 4 per cent. Since at this rate $£ 100$ would amount to $£ 102$ in six months, A can equitably discharge his debt to B by paying him £100 at once instead of £102 at the end of half-a-year. In this case $£ 100$ is called the Present Worth of $£ 102$, and $£ 2$ is called the True Discount on $£ 102$ for six months at 4 per cent. per annum.

Thus the Present Worth of a debt is that sum which with its interest for the given time would amount to the sum due, and the True Discount on the debt is the Simple Interest on the Present Worth ; or briefly

$$
\text { Present Worth }+ \text { Interest on P.W. = Sum due, }
$$

Present Worth + Discount on Debt = Sum due.
In practice discount is often calculated as interest on the sum due, and is then known as Banker's or Commercial Discount.

A Bill is a written promise to pay a sum at a given date, and the amount due is called the Face Value of the Bill. A Bill nominally due on a certain date is not legally due until 3 days later. These days are called days of grace; thus a bill dated May 20th and due in 3 months is legally due on Aug. 23rd.

Example 1. Find the true discount and present worth of $£ 204.16 \mathrm{~s}$. due in 146 days at 6%.

Int. on $£ 100$ at 6% for 146 days $=£ 6 \times \frac{146}{36}=£ \frac{12}{5}$, that is, a principal $£ 100$ amounts to $£\left(100+\frac{12}{5}\right)$ or $£ \frac{512}{5}$.

Thus, on a debt $\mathfrak{f} \frac{51}{5} \frac{2}{2}$, the true discount $=\mathfrak{f} \frac{12}{5}$,

$$
\begin{aligned}
\because \quad £ 204 \frac{4}{5} \quad & =£ \frac{12}{5} \times \frac{1024}{5} \div \frac{512}{5} \\
& =£ \frac{1024}{5} \times \frac{12}{512}=£ 4.16 \mathrm{~s} .
\end{aligned}
$$

And the present worth $=£ 204,16 s .-£ 4.16 s .=£ 200$.
Note. If present worth alone is required we use the method of Example 4, p. 68.

Example 2. Find the true present worth of a bill for $£ 9397.10$ s. drawn March 16th at 12 months and discounted on May 31st at $6 \frac{1}{4} \%$ per annum, allowing the usual 3 days of grace.

The bill becomes legally due on March 19th, and, reckoning from May 31st, has 292 days to run.

$$
\text { Int. on } £ 100 \text { at } 6 \frac{1}{4} \% \text { for } 292 \text { days }=£ \frac{25}{4} \times \frac{29}{36}=£ 5 \text {; }
$$

Thus, on a bill for $£ 105$ the present worth $=£ 100$;

$$
\therefore \quad, \quad £ 9397.10 \% \quad, \quad=£ 100 \times \frac{9397 \frac{1}{2}}{105}=£ 8950 \text {. }
$$

When a debt is due after a number of years the discount must be calculated at compound interest on the present worth.

Example 3. Find the present worth of £171. 15s. 10d. due 3 years hence at 4% compound interest.

Here the question is: What principal will amount to $£ 171.15 \mathrm{~s}$. 10 d . in 3 yrs . at 4% compound interest?

This example has already been solved [see Ex. 3, p. 71]. Other cases may be treated similarly.

It may be observed that the inverse questions on interest, discussed at pages 67, 68, furnish illustrations of discount and present worth. We have only to substitute the words present worth and face value (or sum due) for principal and amount respectively, and to remember that the interest on the present worth is the discount on the sum due.

Examples XXVI.

[In the following examples true discount is always to be found unless the contrary is stated.]

Find the present worth of

Find the discount on
6. $£ 962$ due $4 \frac{1}{2}$ years hence at $4 \frac{1}{2}$ per cent.
7. £2160 ,, 2 ,, " 4

Find the discount on

11. The true discount on a certain sum due $2 \frac{1}{2}$ years hence at 3% per annum is $£ 17.148 .6 \mathrm{~d}$. What is the sum?
12. Shew that the interest on $£ 266.13 s .4 d$. for 3 months at $4 \frac{1}{2} \%$ per annum is equal to the true discount on $£ 83$ due 15 months hence at 3% per annum.
13. At what rate per cent. will the present worth of $£ 100.10$ s. $3 d$. payable 2 years hence be $£ 93$. 10 s. ?
14. If the difference between the interest and the discount on a sum of money for 2 months at $4 \frac{1}{2}$ per cent. is $2 s .3 d$., find the sum.
15. What rate per cent. per annum does a man get for his money when in discounting a bill due in 10 months he deducts as discount 4 per cent. of the total amount of the bill?
16. Find the true discount, allowing the usual 3 days' grace, upon a bill for $£ 603$, drawn Oct. 4th at 4 months, and discounted Nov. 26th at $2 \frac{1}{2}$ per cent. per annum.
17. Find the present worth of a bill for $£ 554.17 \mathrm{~s} .11 \frac{3}{4} d$. drawn April 15th at 6 months, paid Aug. 6th at $3 \frac{1}{2}$ per cent., days of grace being allowed.
18. A bill for $£ 1812$ drawn July 13th at 5 months is discounted on October 4th at $3 \frac{1}{3}$ per cent. Find the true discount, allowing the usual three days of grace.
19. Find the present worth at $2 \frac{1}{2} \%$ compound interest on £143. 11s. $8 \frac{1}{2} d$. payable 3 years hence.
20. Find the present worth of $£ 1447$. 0s. $7 \frac{1}{2}$ d. due 3 years hence at 5% compound interest.
*21. If a sum of $£ 1000$ becomes due three months hence, what is its present value as commonly calculated, and what as correctly calculated, interest being reckoned at 5 per cent.?
*22. Find to the nearest penny the simple interest on £248. 18s. 9d. for $2 \frac{1}{2}$ years at $3 \frac{3}{4}$ per cent. per annum.

Find also the sum of money which must be invested at $3 \frac{3}{4}$ per cent. per annum simple interest in order to amount to £248. 18s. 9 d. in $2 \frac{1}{2}$ years.
*23. Find the difference between the simple interest and the compound interest on $£ 2343$. 15 s . for 2 years at 4 per cent. per annum.

Find the present value of $£ 84.10$ s. due two years hence, compound interest being reckoned at 4 per cent. per anuum.

Twenty-Seventh Week. Stocks.

Notes and Hints for Solution. Money borrowed by Governments, Town Corporations, Railways, and some other large undertakings is known as Stock. The public who lend the money are known as Stockholders, and receive interest periodically (usually half-yearly or quarterly) as a percentage on the amount of Stock held. This interest is sometimes at a fixed rate, and the percentage gives the name to the Stock, " $2 \frac{1}{2}$ per cent. Stock," "4 per cent. Stock," and so on. Sometimes the periodical interest is made after a division of profits, and is called a dividend. Dividends vary from time to time according to the prosperity of the business. The Stock also varies in value owing to different causes. If $£ 100$ Stock is worth $£ 100$ in cash, it is said to be at par; if it is worth more than $£ 100$ cash it is said to be at a premium ; if it is worth less than $£ 100$ cash it is said to be at a discount. The price of Stock is quoted at so much per cent.; thus a Stock is said to be "at 97 " (or at a discount of 3 per cent.) when $£ 100$ Stock can be bought for $£ 97$; a Stock "at 105 " is one in which the cash value of $£ 100$ Stock is $£ 105$, and so for other cases.

In working examples in Stocks it is important to distinguish clearly between Stock and Cash, and to remember that the dividends do not depend on the price at which the Stock is bought.

Example 1. How much 5 per cent. Stock at $112 \frac{1}{2}$ can be bought for £3037. 10s. ?

Here $£ 112 \frac{1}{2}$ cash will buy $£ 100$ Stock;

$$
\therefore \quad £ 3037 \frac{1}{2} \quad, \quad, \quad £ 100 \times \frac{3037 \frac{1}{2}}{112 \frac{1}{2}}, \text { or } £ 2700
$$

[It should be noticed here that we are not concerned with any question of income, hence it is unnecessary to name the particular class of Stock so long as we know the narket price.]

Example 2. What is the cash value of $£ 5640$ in $4 \frac{1}{2} \%$ Stock which is 6 per cent. below par?

Here $£ 100$ Stock sells for $£ 94$ cash ;

$$
\therefore \quad £ 5640, \quad,, \quad £ 94 \times \frac{5640}{100} \text {; }
$$

\therefore required cash value $=£ 5301$. 12s.

Example 3. A man holds $\mathfrak{£ 5 6 4 0}$ in $4 \frac{1}{2} \%$ Stock at 94 ; find his income.

On $£ 100$ Stock he gets an income of $£ 4 \frac{1}{2}$;

$$
\therefore \text { on } £ 5640 \quad, \quad \quad, \quad £ 4 \frac{1}{2} \times \frac{5640}{100}=\mathfrak{£ 2 5 3 . 1 6 s . ~}
$$

Example 4. A man invests $£ 5640$ in $4 \frac{1}{2} \%$ Stock at 94 ; what is his income?

Here $£ 94$ cash will purchase an income of $\mathfrak{£ 4} \frac{1}{2}$;
$\therefore \quad £ 5640 \quad, \quad, \quad £ 4 \frac{1}{2} \times \frac{5640}{9} 4$, or $£ 270$.
Example 5. How much money must I invest in $4 \frac{1}{2} \%$ Stock at 94 in order to get an income of $£ 45$?

To purchase an income of $£ 4 \frac{1}{2}$ I must invest $£ 94$ cash;

$$
\therefore \quad, \quad \quad, \quad £ 45 \quad, \quad £ 94 \times \frac{45}{4 \frac{1}{2}} \text {, or } £ 940 .
$$

Example 6. Which is the better investment, 3% Stock at 87 or 4% Stock at 115 ?

Suppose $£ 87 \times 115$ is invested in each stock; then, as in Example 4, Income from first Stock $=£ 3 \times \frac{87 \times 115}{87}=£ 345$.
Income from second Stock $=£ 4 \times \frac{87 \times 115}{115}=£ 348$.
Thus the second is the better investment.

Examples XXVII.

1. How much stock at 124 can be bought for $£ 496$?
2. How much stock at $97 \frac{1}{2}$ can be bought for $£ 3900$?
3. When railway stock is 5 per cent. below par, how much can be bought for $£ 2527$?
4. How much stock can be bought for $£ 621$ when the price quoted is at a premium of $3 \frac{1}{2}$ per cent.?
5. For how much will $£ 3075$ stock at 102 sell ?
6. What will be obtained by the sale of $£ 2735$ stock at $£ 95$?
7. Find to the nearest penny what the sale of $£ 3572$ Consols will amount to when they are $9 \frac{1}{2}$ per cent. above par.
8. What is the cash value of $£ 4715$ stock which is quoted at $£ 87 \frac{1}{2}$?
9. A man holds $£ 1240$ in $2 \frac{3}{4}$ p.c. Consols, what is his annual income?
10. What is the annual income arising from $\mathfrak{£ 4 1 0}$ of $3 \frac{1}{2}$ p.c. stock ?
11. What is the half-yearly dividend due to a man who owns £860 railway $4 \frac{1}{2}$ p.c. preference stock ?
12. What income will be obtained by investing $£ 1188$ in 3 p.c. stock at 81 ?
13. What income will be derived from $£ 967$. 10 s. laid out in the purchase of India 5 per cents. at $107 \frac{1}{2}$?
14. If a 3 p.c. stock is at $94 \frac{3}{8}$, what income will be derived by investing £7927. 10s.?
15. How much money must be invested in $5 \frac{1}{2}$ p.c. stock at 110 so as to get an income of $£ 60$?
16. How much must I invest in railway stock at $139 \frac{1}{2}$ paying $7 \frac{3}{4}$ p.c. per annum so as to secure an income of $£ 25$?
17. What sum must be invested in 3 p.c. stock at $87 \frac{5}{8}$ in order to obtain an income of $£ 435$? What income would be obtained from the same sum if the stock was at 87 at the time of purchasing?
18. Which is the better investment, 4 p.c. stock at 105 or $5 \frac{1}{2}$ p.c. stock at 140 ?
19. One man invests a certain sum in $2 \frac{3}{4}$ p.c. stock at $97 \frac{1}{2}$, another invests an equal sum in $3 \frac{1}{2}$ p.c. stock which is 20 p.c. above par; compare their incomes.
20. Which is the more profitable investment, a stock quoted at 152 paying $4 \frac{1}{2}$ p.c. or a $2 \frac{1}{2}$ p.c. stock at 85 ? If $£ 3230$ is invested in each, what is the difference in income?
21. How much must be invested in $4 \frac{3}{4}$ p.c. stock at 95 to produce an income of $£ 613$. $12 s$. after paying an income tax of $4 d$. in the $£$?
22. An income of $£ 1000$ is made up of $£ 240$ from a 6 p.c. stock, $£ 340$ from an 8 p.c. stock, and the remainder from a $3 \frac{1}{2}$ p.c. stock; how much of each stock is held ?
23. What income would be obtained by investing the sum produced by selling $35 \frac{1}{2}$ acres at $£ 350$ an acre in 3 per cents. at 71 ? How much would it differ from that obtained by letting the land at £14 an acre?
24. The difference between the incomes derived from investing a certain sum in $4 \frac{1}{2}$ p.c. stock at 150 , and in $3 \frac{1}{2}$ p.c. stock at 125 , is found to be £6. 10\%. What was the sum invested ?

Twenty-Eighth Week.
 Stocks and Shares.

Notes and Hints for Solution. The purchase and sale of stock is conducted through an agent called a Broker, who charges a commission known as Brokerage on every £100 bought or sold. The brokerage is usually $2 s .6 d$. on $£ 100$ stock, and is quoted as " $\frac{1}{8}$ per cent." Thus in investing money the buyer pays $\frac{1}{8}$ per cent. more than the quoted price of the stock, and the seller receives $\frac{1}{8}$ per cent. less than the quoted price. In the examples hitherto discussed the brokerage has been supposed to be included in the price of stock.

Sometimes the Capital of a Company is divided into Shares of a definite amount such as $£ 1, £ 5$, or $£ 10$. Thus, instead of speaking of $£ 50,000$ stock, we may have 50,000 shares of $£ 1$, or 10,000 shares of $£ 5$, or 5000 shares of $£ 10$. But, unless otherwise stated, it is to be understood that the dividends are quoted as so much per cent.

Example 1. A person invests $£ 9075$ in 3% stock at $90 \frac{5}{8}$, and when it has risen to $91 \frac{1}{8}$ he sells out and reinvests in $3 \frac{1}{2} \%$ Stock at $97 \frac{3}{8}$; find the change in his income, brokerage at $\frac{1}{8}$ per cent. being charged on each transaction.

Here $£\left(90 \frac{5}{8}+\frac{1}{8}\right)$ cash has to be paid for $£ 100$ Stock; hence with $£ 90 \frac{3}{4}$ cash he buys income $£ 3$;

$$
\therefore \quad \text { with } £ 9075 \quad, \quad, \quad £ 3 \times \frac{9075}{90^{\frac{3}{4}}}=£ 300 .
$$

On selling, for $\mathfrak{£ 1 0 0}$ Stock he receives $£\left(91 \frac{1}{8}-\frac{1}{8}\right)$ cash;
i.e. stock which was bought for $£ 90 \frac{3}{4}$ cash sold for $£ 91$ cush ;

$$
\therefore \quad, \quad \quad " \quad, \quad £ 9075 \quad, \quad £ 91 \times \frac{9075}{90_{\frac{3}{4}}^{3}}
$$

Again, for $£ 97 \frac{1}{2}$ cash he buys income $£ 3 \frac{1}{2}$;

$$
\therefore \text { for } £ 91 \times \frac{9075}{90^{\frac{3}{4}}} \quad,, \quad £ 3 \frac{1}{2} \times \frac{91 \times 9075}{90 \frac{3}{4} \times 97 \frac{1}{2}}=£ 326 \frac{2}{3} .
$$

Thus the gain in his income is $£ 26.13 s .4 d$.
Example 2. What rate per cent. on capital is obtained by inresting in $4 \frac{1}{2} \%$ Stock at $134 \frac{7}{8}$, brokerage being $\frac{1}{8}$ per cent.

Here $£\left(134 \frac{7}{8}+\frac{1}{8}\right)$ cash has to be paid for $£ 100$ Stock.
So that $£ 135$ cash will buy an income of $£ 4 \frac{1}{2}$;

$$
\therefore \quad £ 100 \quad, \quad, \quad £ 4 \frac{1}{2} \times \frac{100}{135}=£ 3 \frac{1}{3} .
$$

Example 3. What price must be paid for $4 \frac{1}{2} \%$ Stock so that a man may get 6% for his money?

Here we have to consider what the price of $4 \frac{1}{2} \%$ Stock is when $\mathfrak{£ 1 0 0}$ cash invested in it produces an income of $£ 6$.

An income of $£ 6$ is bought for $£ 100$ cash;

$$
\therefore \quad, \quad £ 4 \frac{1}{2} \quad, \quad £ 100 \times \frac{4 \frac{1}{2}}{6}, \text { or } £ 75 .
$$

Example 4. If $£ 3$ shares in a Company are sold at 7 s .6 d . premium, find (i) how many shares can be bought for $£ 540$, (ii) the cost price of 40 shares, (iii) the dividend at 4% on 60 shares.
(i) Since each share costs $£ 3 \frac{3}{8}$, the required number of shares $=£ 540 \div £ 3 \frac{3}{8}=160$.
(ii) 40 shares cost $£ 3 \frac{3}{8} \times 40=£ 135$).
(iii) 60 shares represent a capital of $£ 3 \times 60$, or $£ 180$, the interest on which at 4% is $£ 7.4 s$.

Example 5. A person invests half his capital in 3 per cent. debentures at $101 \frac{1}{2}$ and the other half in 4 per cent. debentures at 135 ; his total income from both sources is £202. 15s. How much did he invest?

Suppose he invests $£\left(135 \times 101 \frac{1}{2}\right)$ in each stock.

$$
\begin{aligned}
& \text { Income from } 3 \% \text { stock }=£ 135 \times 3=£ 405 \\
&, \quad 4 \% \quad, \quad=£^{2} \frac{03}{2} \times 4=£ 406
\end{aligned}
$$

Whole income $£ 811$ arises from $£ 135 \times 203$ invested;

$$
\begin{aligned}
\therefore \quad £ 202 \frac{3}{4} \quad, \quad & £ 135 \times 203 \times \frac{202 \frac{3}{4}}{811} \\
& =£ \frac{135 \times 203}{4}=£ 6851.5 \%
\end{aligned}
$$

Examples XXVIII.

[Unless otherwise stated brokerage is included in the prices quoted.]

1. What annual income is obtained by investing $£ 9175$ in 4 per cent. stock at $91 \frac{5}{8}$, brokerage being $\frac{1}{8}$ per cent. ?
2. How much stock at $97 \frac{3}{8}$ can be bought for $£ 5850$, brokerage being $\frac{1}{8}$ per cent.?
3. If I buy $£ 1400$ stock in 3 per cents. at $92 \frac{3}{8}$, paying brokerage $\frac{1}{8}$, what does it cost me? What will be the annual interest on my outlay?
4. What interest per cent. is derived from investing in 3 per cent. stock at $83 \frac{3}{4}$, paying brokerage $\frac{1}{4}$ per cent.?
5. What sum must be invested in $4 \frac{1}{2}$ per cent. stock at $102 \frac{1}{4}$ to produce an income of $£ 363$, brokerage being $\frac{1}{4}$ per cent. ?
6. Calculate the price of $2 \frac{1}{2}$ per cent. Consols when $£ 8670$ can be bought for $£ 8279$. 17 s . (brokerage $\frac{1}{8}$ per cent.).
7. A person invests $£ 2852$ in 5% stock at 115 ; he sells out at 125 and invests in 3% stock at 93 ; find the change in his income.
8. I invest £5187. 10 s. in 3% stock at 83 , but afterwards transfer three-fifths of the sum to the 4 per cents. at 96 ? How is my income affected ?
9. What annual income is obtained by investing $£ 1900$ in $3 \frac{1}{2} \%$ stock at 95 ? Find the change in income if the stock be sold at 90 , and the proceeds re-invested in 3% stock at 81 .
10. A man sells out $£ 285002 \frac{1}{2} \%$ Consols at 92 , and invests the proceeds partly in land which pays an annual rent of $1 \frac{3}{4} \%$ on the purchase money, and partly in $4 \frac{1}{2} \%$ debentures at 150 , so as to derive the same income from each purchase. Find the change in his income.
11. Find the alteration in income occasioned by transferring $£ 3200$ from 3 per cent. stock at $86 \frac{3}{8}$ to 4 per cent. stock at $114 \frac{7}{8}$, the brokerage being $\frac{1}{8}$ per cent. in each case.
12. A certain amount of 3% stock at 84 is transferred to $3 \frac{1}{2} \%$ stock without change of dividend. What is the price of the latter stock ?
13. With 3% stock standing at 90 I sold out and bought railway shares at 180 which paid 10%, and my income was increased by $£ 10$; how much stock did I sell ?
14. I derive an income of £126. 13s. 4 d . from 3% stock; I sell out at 93 and buy Russian $3 \frac{1}{2}$ per cents. at 95 ; what is the difference in my income?
15. My income from 3 per cents., after deducting $5 d$. in the pound income-tax, is $£ 452.78 \mathrm{~s} .6 \mathrm{~d}$. I sell out at $78 \frac{5}{8}$ and buy 4% stock at $102 \frac{3}{8}$; find to a penny the alteration in income, brokerage $\frac{1}{8}$ per cent. being charged for each transaction.
16. A person finds he can obtain $£ 5$ more per annum by investing in $3 \frac{1}{2} \%$ stock at 96 than in 3% stock at 88 ; how much has he to invest?
17. A man sells out $2 \frac{3}{4} \%$ Consols at $96 \frac{1}{4}$, and by investing the proceeds in shares which pay an annual dividend of $£ 4$ per share raises his income 5 per cent. What was the price of each share?

[^2]18. If fifty $£ 10$ shares in a company paying a dividend of 8% are sold for $£ 18$ each, and the proceeds invested in $£ 5$ shares in another company at $£ 3.10 \mathrm{~s}$. each, find what difference in income results if the second company pays a dividend of $3 \frac{1}{2} \%$.
19. One company pays $5 \frac{1}{2} \%$ on shares of $£ 100$ each ; another pays at the rate of $3 \frac{1}{2} \%$ on shares of $£ 10$ each ; if the price of the former be $£ 115.10$ s., and of the latter $£ 7.15 s$., compare the rates of interest which the shares return to a purchaser.
*20. A person sells out $£ 3965$ from 3 per cent. stock at 74 , and re-invests in $5 \frac{1}{2}$ per cents. at 143 . What is his gain or loss in annual income?
*21. A man invests $£ 3600$ in 3 per cent. stock at 90 . He sells out at 80 and lends $\frac{5}{8}$ ths of his money at 4 per cent. and $\frac{3}{8}$ ths at 5 per cent. How long must the loan last so that when he re-invests his money in 3 per cents. at 90 his gain on interest may exactly equal his loss upon principal?
*22. If 3 per cent. stock is at $98 \frac{1}{4}$, how much money must be invested in the stock to yield an income of $£ 120$ a year? Find also to the nearest penny the annual income from the same sum of money invested in 4 per cent. stock at $127 \frac{1}{8}$.
*23. What is the rate per cent. of the interest that a man gets on money invested in a 4 per cent. stock, the price of which is $119 \frac{3}{8}$ (including brokerage)? What income would he get on $£ 1500$ so invested?

If $£ 100$ of $2 \frac{3}{4}$ per cent. consolidated stock cost $£ 97 \frac{5}{8}$ of money, what quantity of the stock would cost $£ 7497$. 12s., and what annual income would be derived from it?
*24. A man invests two equal sums of money; the one bears interest at the rate of $2 \frac{1}{2}$ per cent. per annum, the other at the rate of 3 per cent. per annum; at the end of $5 \frac{1}{2}$ years he has received $£ 18$. $7 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d}$. more from the latter investment than from the former; find the sums of money invested.
*25. A man invests a fourth of his capital in $2 \frac{1}{4}$ per cent. stock at 90 , and the remainder in $3 \frac{1}{2}$ per cent. stock at 105 ; find the average rate per cent. return on his capital.
*26. A man invested $£ 2000$ in a 4 per cent. guaranteed stock when the price of $£ 100$ of stock was $£ 97 \frac{5}{8}$ in money; he sells out when the price of $£ 100$ has risen to $£ 134$, and invests the proceeds in a $2 \frac{1}{2}$ per cent. stock, the price of $£ 100$ of which is $£ 98$; neglecting the commissions, find whether his income is increased or diminished, and to the nearest penny by how much.

Twenty-Ninth Week. Miscellaneous Examples.

Notes and Hints for Solution. The following exanples illustrate some useful types of questions relating to Time, Work, and Velocity.

Example 1. A work can be done by A, B, and C working separately in 40,60 , and 120 days respectively. When A and B have been at work 4 days, B falls ill and his place is taken by C; if A leaves off ten days later, how much longer will C require to finish the work?
A, B, C respectively do $\frac{1}{40}, \frac{1}{60}, \frac{1}{120}$ of the work in 1 day; \therefore in 4 days A and B will do $\frac{4}{40}+\frac{4}{60}$, or $\frac{1}{6}$ of the work, leaving $\frac{5}{6}$ to be completed. In the next ten days A and C do $\frac{10}{40}+\frac{10}{120}$, or $\frac{1}{3}$ of the work, and thus leave $\frac{5}{6}-\frac{1}{3}$, or $\frac{1}{2}$ still to be done by C working alone. Hence the required number of days is $\frac{1}{2} \div \frac{1}{1} \frac{1}{2}=60$.

Example 2. If 4 men with 9 boys can do a piece of work in $1 \frac{1}{5}$ day, and 3 men with 6 boys can do the same work in $1 \frac{5}{7}$ day, how long would one boy or one man working alone take to do the work?
\therefore one boy would take 18 days working alone, and it easily follows that one man would take 12 days.

Example 3. I row against a stream flowing $1 \frac{1}{2}$ miles an hour to a certain point, and then turn back, stopping two miles short of the place whence I originally started. If the whole time occupied in rowing be 2 hrs . 10 mins., and my uniform speed in still water be $4 \frac{1}{2}$ miles an hour, find how far upstream I went.

Upstream the rate of rowing is $4 \frac{1}{2}-1 \frac{1}{2}$, or 3 miles per hour.
Downstream ,, ,, $4 \frac{1}{2}+1 \frac{1}{2}$, or 6 ,,
If I had returned to the starting point, the last 2 miles would have taken 20 minutes, and the whole time would have been $2 \frac{1}{2}$ hours, two-thirds of which must have been occupied by the upstream journey, since the rates of rowing up and down are as 1 to 2 .

Thus the distance upstream $=\frac{2}{3} \times \frac{5}{2} \times 3=5$ miles,

Examples XXIX.

1. If A can do a piece of work in 10 days, B in 15 days, and C in 30 days; how long will they take when they work together?
2. A and B together do a work in 15 days, A working alone could do it in 20 days; how long would B take?
3. Three persons, A, B, C, can complete a work in 10 days; if A takes 30 days and $B 45$ days to do the same work, how long will C take?
4. A cistern is filled in 3 hours when water flows in from two pipes; when one of these alone is open it takes 8 hours to fill the cistern, how long would be required for the other pipe alone?
5. A cistern has two pipes, one of which can fill it in 2 hrs ., the other in $3 \mathrm{hrs}$. ; a third pipe can empty it in $5 \mathrm{hrs}$. ; if while the cistern is empty all these are opened, in what time will it be one-quarter filled?
6. A and B can do a piece of work in 12 days; after working 2 days they are assisted by C, who works at the same rate as A, and the work is finished in $6 \frac{1}{4}$ days more ; in how many days would B alone do the work?
7. A cistern contains 60 gallons; it has a tap which will fill it in 12 minutes, and a waste pipe which will empty it in 15 minutes. (1) The cistern being empty, both taps are turned on at once ; how long will the cistern take to fill? (2) The supply tap is turned on for 5 minutes, then both for quarter of an hour, and then the wastepipe is turned off; how long after this will it be before the cistern is filled?
8. In what time would a cistern be filled by three pipes whose diameters are $\frac{1}{2} \mathrm{in} ., \frac{3}{4} \mathrm{in}$., and 1 in ., running together, when the largest alone would fill it in 58 minutes; the amount of water flowing in by each pipe being proportional to the square of its diameter?
9. A, B, and C can do a piece of work together in 60 days ; after they have worked together for 10 days A withdraws, and B and C work together at the same rate for 20 days more; B then withdraws, and C completes in 96 days more, working $\frac{1}{3}$ longer each day. Working at his former rate C alone could do the work in 222 days; find how long A and B would each take to do it separately.
10. A works for 6 days at the rate of 8 hours per day ; B works for 5 hours on the first day, and on each of the subsequent days one hour longer than on the preceding day: A does as much in 4 hours as B does in 5 hours. If the total sum paid to A and B as wages for the week be $£ 2$. 2 s., how muph should each receive?
11. If 5 men or 7 women can do a piece of work in 37 days, in what time will 7 men and 5 women do a piece of work twice as great?
12. A piece of work can be done by 4 men in 6 days, or by 5 women in 8 days; 3 men and 3 women are employed; what is the total expense, if a man's daily wage is $2 s .8 d$. , and a woman's $1 s .8 d$. ?
13. A piece of work can be done by 3 men and 4 boys in 6 days, by 3 men and 1 boy in 8 days, and by 4 women and 8 boys in 5 days. How long would a woman take to complete the work single-handed ?
14. A farmer engaged a number of men and boys to reap corn; the men were to receive $4 s$. a day and the boys $2 s .6 d$. ; if the work of 3 boys was equal to that of 2 men, and 4 men and 5 boys could together reap 22 acres in 4 days, what sum should 6 men and 7 boys receive for reaping 48 acres?
15. If a certain amount of work is done by 9 men, 12 women, and 13 boys in 11 days, how long will the same work take if 18 men, 3 women, and 5 boys are set to do it : assuming that the ratio of a man's work to a woman's is as 5 to 3 , and a woman's work to a boy's as 4 to 3 ?
16. Two men and three boys can level and turf 352 yards of a cricket ground in 4 days, and three men and two boys can complete 276 yards in 3 days: compare the amount of work done by a man and a boy.
17. A man rode a bicycle from A to B, a distance of 54 miles, at an average rate of 8 miles an hour ; another man started from A on horseback, half an hour after the bicyclist, and arrived at B 15 minutes before him; find the ratio of their speeds.
18. A and B start at the same time from London to Blisworth, A walking 4 miles an hour, B riding 9 miles an hour. B reaches Blisworth in 4 hours, and immediately rides back to London. After 3 hours' rest he starts again for Blisworth at the same rate. How far from London will he overtake A, who has in the meantime rested 7 hours?
19. At what distance from London will a train which leaves London for Rugby at 2.45 p.m., and goes at the rate of 41 miles an hour, meet a train which leaves Rugby for London at 1.45 P. M., and goes at the rate of 25 miles an hour, the distance between London and Rugby being 80 miles?
20. A and B start from the same point to run in opposite directions round a circular race-course 9755 feet in circumference, A not starting till B has run 105 feet. They pass each other when A has run 4850 feet. Which will first come round to the startingpoint, and what distance will they then be apart?

Thirtieth Week. Miscellaneous Examples.

Notes and Hints for Solution. The following examples illustrate questions relating to Clocks, Chain Rule, Mixtures, and Races.

Example 1. At what time between 4 and 5 o'clock will the hands of a clock be (i) at right angles to each other, (ii) opposite to each other?
(i) This will happen twice, namely when the minute-hand is 15 minute-spaces before and behind the hour-hand. Considering the former case alone: since at 4 o'clock the hour-hand is 20 minutespaces ahead of the minute-hand, the latter must gain 35 minutespaces.

Now the min.-hand passes over 60 minute-spaces while the hr. -hand passes over 5 ;
$\therefore \quad$ the min.-hand gains 55 min. -spaces in every 60^{\prime},
that is $\quad, \quad 35 \quad, \quad, \quad 60^{\prime} \times \frac{35}{5}$, or $38 \frac{2^{11}}{}{ }^{\prime}$.
(ii) This will happen when the min.-hand has gained $20+30$ min.-spaces on the hr.-hand.

$$
\text { That is, in } 60^{\prime} \times \frac{50}{3} \frac{0}{5} \text {, or } 54 \frac{6}{11}{ }^{\prime} \text {. }
$$

Thus the required times are $38 \frac{2^{\prime}}{}{ }^{\prime}$ and $54 \frac{6}{11}{ }^{\prime}$ past 4 .
Example 2. If 48 lbs . of tea are worth 55 gals. of ale; and 63 gals. of ale 24 bottles of wine, and 11 bottles of wine 9 pairs of gloves, how many pounds of tea must be given for 20 pairs of gloves?

20 pairs of gloves $=20 \times \frac{11}{9}$ bottles of wine

$$
\begin{aligned}
& =20 \times \frac{11}{9} \times \frac{63}{24} \text { gals. of ale } \\
& =20 \times \frac{11}{9} \times \frac{63}{24} \times \frac{48}{5} 5 \mathrm{ll} \mathrm{~s} . \text { of tea. }
\end{aligned}
$$

Thus the req. no. of lbs. of tea $=\frac{20 \times 11 \times 63 \times 48}{9 \times 24 \times 55}=56$.
If we arrange the separate statements as follows, we have an example of Chain Rule :

Req. no. of lbs. of tea $=20$ pairs of gloves,
9 pairs of gloves $=11$ bottles of wine,
24 bottles of wine $=63$ gals. of ale,
55 gals. of ale $=48 \mathrm{lbs}$. of tea.
By multiplying together the numbers on each side and dividing the product on the right by the product on the left, we at once obtain the required result.

Example 3. In what proportion must coffee at $1 . \%$. $2 d$. per lb. be mixed with coffee at $2 s$. per 1 b . so that the mixture may be sold at $2 \mathrm{~s} . \mathrm{ld}$. per 1 lb . at a profit of 25 per cent.?

To sell without gain or loss the selling price per lb. must be

$$
25 d . \times \frac{100}{1} \frac{0}{5}, \text { or } 20 d .
$$

By selling at this price
On 1 lb . of $14 d$. coffee there is a gain of $6 d$. ,
On 1 lb . of $24 d$. ,, loss of $4 d$.;
$\therefore 2 \mathrm{lbs}$. of the former must be taken with 3 lbs . of the latter, so that the gain in the one case may balance the loss in the other.

Thus the required proportion is $2: 3$.

Examples XXX.

1. When are the hands of a clock together between the hours of 6 and 7 ?
2. At what times between 3 and 4 o'clock is the minute-hand of a watch (1) at right angles to the hour-hand, (2) one minute ahead of the hour-hand?
3. When between 4 and 5 o'clock will there be 13 minutes between the two hands?
4. A watch which gains $5^{\prime \prime}$ in every 3^{\prime} was set right at 6 A.m. What was the true time in the afternoon of the same day when the watch indicated 3 hrs . 15' ?
5. Two clocks are together at 12 o'clock ; one loses $7^{\prime \prime}$ and the other gains $8^{\prime \prime}$ in 12 hours; when will one be half-an-hour before the other, and what o'clock will it then shew?
6. A clock loses 5 seconds in every 24 minutes; at 10 P.m. on Sunday it is 19 minutes fast ; when will it shew the right time?
7. Two clocks point to 2 o'clock at the same instant on the afternoon of Christmas day ; one loses 8 seconds and the other gains 7 seconds in 24 hours; when will one be half-an-hour before the other, and what time will each clock then shew ?
8. If 5 fowls are worth 3 ducks, 14 ducks worth 5 geese, and 3 geese worth 2 turkeys, what is the price of a fowl when a turkey costs a guinea ?
9. If $1 \frac{3}{5}$ yards of cloth are worth $\frac{5}{12}$ of a bushel of corn, and 12 yards of cloth cost $4 \frac{1}{2}$ dollars, what is the value of 5 quarters of corn, a dollar being equal to $4 s .2 d$. ?
10. When 52 lbs . of coffee are worth as much as 12 lbs . of tea, 22 lbs . of tea are worth as much as 572 lbs . of sugar, a cask of sugar costs 2 guineas, and 1 cwt. of coffee costs 8 guineas, what is the weight of a cask of sugar?
11. If $£ 3=20$ thalers, 25 thalers $=93$ francs, 27 francs $=5$ scudi, and 62 scudi $=135$ gulden, how many gulden $=£ 1$?
12. In what proportion must coffee at $1 s .6 d$. per lb. be mixed with coffee at 2 s . per 1 l ., so that the mixture: may be sold without loss or profit at $1 s .8 d$. per lb. ?
13. Wine at $18 s$. a gallon is mixed with wine at $25 . s$ a gallon ; in what proportion must the mixture be made so as to be worth $22 s$. a gallon?
14. In what proportion must a merchant mix one kind of tea at $3 s$. per lb. with another at $1 s .6 d$. per lb ., in order that by selling the mixture at $2 s .8 d$. per 1 lb . he may make a profit of 25 per cent. ?
15. With a tea worth half-a-crown a pound a dealer mixes an inferior quality worth $1 s .6 d$. a pound. In what proportion must he mix them, so that by selling the mixture at the higher price he may gain 16 per cent. ?
16. A milkseller pays $1 s$. $1 d$. per gallon for his milk; he adds water and sells the mixture at $2 d$. per pint, thereby making altogether 40 per cent. profit. Calculate the proportion of water to milk his customers receive ?
17. A can beat B by 5 yards in 100 , and C can beat B by $14 \frac{1}{2}$ yards in the same distance; by how much will C beat A in a mile race, the rates of running remaining uniform?
18. A hare sees a hound 176 yards away from her, and scuds off in the opposite direction at a speed of 12 miles an hour ; thirty seconds later the hound perceives her, and gives chase at a speed of 18 miles an hour. How soon will he overtake the hare, and at what distance from the spot whence the hare took flight ?
19. A and B run a mile race; A goes 5 feet at each step, and takes $3 \cdot 3$ steps per second all through the race ; B goes 6 feet at each step, and takes 3 steps per second for three-quarters of a mile, but in the last quarter he only goes 5.5 feet at each step, and takes 2.5 steps per second ; which won the race, and what time did each take?
*20. A and B together can do a piece of work in $5 \frac{2}{3}$ days, and A does twice as much work as B in a given time ; how long would it take A alone to do the work?
*21. A, B, and C run a race for a mile. B has one minute start and C two minutes on A. A, B, C run respectively at the rate of $10,8 \frac{1}{2}, 7 \frac{1}{2}$ miles per hour. Who wins and who loses, and how long after the winner does the last man pass the winning post?
*22. A, B, and C working together do a piece of work for £3. 78. $6 d$. A, working alone, could do it in 10 days ; B, working alone, could do it in 12 days ; and C, working alone, could do it in 15 days. Divide the money between them in proportion to the quantity of work done by each.

ANSWERS TO ARITHMETIC.

I. Page 1.
3. £6338. $6 \mathrm{~s} .5 d$.

1. £113. 13s. 4 d .
2. £7. 9 s. $1 \frac{1}{2} d$.
3. 12 tons 1 cwt. 0 qr. 14 lbs .13 oz .
4. 300,000 .
5. 397.
1. 15 ac. 1 r. 17 p. 2 sq. yds. 6 sq. ft. 108 sq. in.
2. 10 pieces ; rem., 5 ft . 13. £232. 6s. $3 \frac{1}{2} d$. 14. 8s. $2 d$.
3. £123. 4s. 16. $4964 . \quad$ 17. 510 lbs .
II. Page 2.
4. £430. 12s. $4 \frac{1}{2} d$.
5. 1 r. 23 p. 10 sq. yds. 3 sq. ft. 23 sq. in.
6. 102 .
7. 30,000 .
8. 142,074 .
9. 96 .
10. 18 s .6 d .
11. $4666^{\frac{2}{3}}$ tons.
12. $123 \frac{1}{4}$ nearly ; £3. 17 s. $10 \frac{1}{2} d$. 13. £3. 5 s. 14. £1. 14 s. $2 d$.
III. Page 3 .
13. $9 ; 8 ; 9,25 ; 11 ; 8,9,11 ; 9,11,25$. $3,3,1,4 ; 5,5,10,13 ; 0,3,2,12$.
14. $93 ; 703$.
15. $7 \times 5 \times 11$.
16. $3^{3} \times 2 \times 13$.
17. $5^{2} \times 7 \times 9$.
18. $2 \times 5 \times 7^{2} \times 3^{2}$.
19. $5^{3} \times 3^{2} \times 17$.
20. $\quad 5^{2} \times 3^{2} \times 11 \times 31$.
21. 37 .
22. 41.
1. 504.
1. 26.
1. 493.
1. 84. 14. 243.
1. 1512.
1. 2310 .
2. 221.
1. 243.
1. $\quad 1507$.
2. 1820. 26.. 4290.
1. 1176.
1. 648.
1. 7425.
1. 17 ; 16,830.
2. £2. 12s. 6 d .
3. $23 ; 46,046$.
4. £7. $14 s$.
IV. Page 4.
5. $\frac{11}{57} . \quad$ 6. $\frac{33}{64}$.
6. $25 \frac{5}{72}$.
7. $50 \frac{3}{8}$.
8. $\frac{29}{31}$.
9. $\frac{5}{8}$.
10. $\frac{2}{7}$.
11. $\frac{17}{27}$.
12. $10 \frac{37}{63}$.
13. $12 \frac{4}{5}$.
14. $\frac{133}{240}$.
15. $\frac{308}{364}$.
16. $\frac{11}{20}$.
17. $0 . \quad 17 . \quad 2 \frac{5}{6} . \quad 19 . \quad 6 . \quad$ 20. 1 .
18. (i) 1 ; (ii) $\frac{1}{3}$; (iii) $1 \frac{25}{47}$.
19. $\frac{61}{60}$.
20. $\frac{2}{7}$.
21. $\frac{167}{168}$.
22. $\frac{127}{241}$ 27. $\frac{65}{333}$.
23. $3 \frac{1}{2}$.
24. $\frac{21}{22}$
25. $\frac{6}{7}$.
26. 18.
1. $\frac{43}{19}$.
2. $\frac{13}{4}$.
3. $\frac{7}{37}$.
4. $\frac{22}{155}$.
5. $1 \frac{1}{2}$.
6. 7.
1. $\frac{9}{49}$.
2. $\frac{3}{8}$.
3. $2 \frac{4}{3 \overline{5}}$.
4. $\frac{29}{210}$.
5. $3_{\frac{4}{9}}$.
6. $\frac{77}{144}$.
7. $\frac{5}{12}$.
V. Page 7.
8. £3. 17 s .6 d .
9. 17 s .6 d .
10. 7 fur. 32 p. 5 yds.
11. 3 tons 5 cwt. 10 lbs. 5. £20. 4 s .10 d .
12. $£ 1254$.
13. (i) $\frac{7}{12}$; (ii) $\frac{5}{8}$.
14. $\quad 10 \mathrm{ac} .3 \mathrm{r} .31 \mathrm{p}$.
15. $\frac{9}{16}$.
16. $2 \frac{2}{5}$.
17. $\frac{1}{480}$.
18. 13 ft .9 in . 13. $\frac{3}{4}$.
19. £1917. 15. $\frac{3}{8}$.
20. 3 fur. 8 p. 3 yds. 2 ft. 8 in.
21. £3. 17 s. 9 d. $; \frac{1}{3} . \quad$ 18. $£ 1169 ; \frac{3}{14}$.
22. 34 ac. 36 p .
23. £6. 3 s. $4 d$. $\quad 21 . \quad 7$ tons 13 cwt. 3 qrs. 14 lbs. $\quad 22 . \frac{8}{135}$.
24. £1. 5 s. $8 \frac{1}{2} d$.
25. $6 s .8 d$.
26. £153. 7s. 1 d .
27. £4558. 13s. 9 d .
28. 780 ; 468 ; 520 acres.
29. £4101.
30. $£ 6400 ; £ 10,000$.
31. $\frac{3}{4}$.
32. £2. 7s. $6 d$.
33. £70. 3 s. $2 \frac{1}{2} d$.
34. £603. 5s.
35. $2 \cdot 7$; $\cdot 27$; $\cdot 00027$; $\cdot 207$; $20 \cdot 07$.
VI. Page 13.
36. $\frac{1}{25}$.
37. $\frac{7}{250}$.
38. $2 \frac{3}{200}$:
39. $\frac{3}{800}$.
40. $\frac{61}{80}$.
41. $\frac{11}{8000}$.
42. $\frac{3}{32000}$.
43. $\frac{5}{64}$.
44. $\cdot 0075$.
45. $2 \cdot 625$.
46. 58.
1. $\cdot 06125$.
2. -015625.
3. $\cdot 0015625$.
4. 848.
1. 2734375.
1. $1 \cdot 2811$.
2. 100.
1. 18 .
2. $\quad 1107$.
3. $11 \cdot 962$.
4. 01 .
5. $160 \cdot 68$.
6. $12 \cdot 1$.
7. 4095.
1. 06059 .
2. $60 \cdot 600606$.
3. 133.
1. 323703.
1. $1 \cdot 13204182$.

VIII. Page 19. 1. $9 d . \quad$ 2. $40 \frac{1}{2} d$. 3. $269 \frac{1}{4} d$. 4. $160 \frac{1}{2} d$.
2. (i) 1967 lbs. ; (ii) 33 yds. ; (iii) 111 dwt. 6. $12 s .9 d$.
3. £3. $17 \mathrm{~s} .7 \frac{1}{2} d$.
4. £4. $7 s .10 \frac{1}{2} d$.
5. £15. 15s. $7 \frac{1}{2} d$.
6. 2s. $1 \frac{1}{2} d$.
7. £784. 1s. 3 d .
8. 89375 .
9. $3 \cdot 76875$.
10. 565625.
1. $4 \cdot 953125$.
2. (i) $\cdot 132375$; (ii) $1 \cdot 390625$; (iii) $1 \cdot 27421875$.
3. 1 ac. 1 r. 36 p .
4. 5 cwt. 2 qrs. 14 lbs .
19.. $21 \mathrm{hrs}$.28 m .48 sec .
5. 16 m .3 fur. 16 p .
6. 2 tons 3 cwt. 7 lbs.
7. 79 ac. 3 r. 6 p.
8. (i) $\cdot 19375$; (ii) 83125 ; (iii) 05 ; (iv) 38671875.
9. £6. 16 s. 25. £17. 8s. 26. £25. $15 s$.
10. £12. 15s. 6 d .
11. $£ 3$. $5 s$. $1 d$.
12. 1 ton 15 cwt . 3 qrs.
13. 44 ac. 3 r. 1 p.
14. 8 bush. 2 pks. 1 gal. 3 qrts.
15. (i) £3. 13 s .6 d. ; (ii) $£ 3.9 \mathrm{~s} .8 \mathrm{~d}$.
16. (i) $£ 2.10 s$. ; (ii) $£ 10.8 s .4 d$.
17. 12s. 10 d .
18. £1. 14s. $2 d$.
19. £3. 3.s. $6 d$.
20. 6 cub. ft. 21
21. £2. 3s. $8 d$.
22. £30. 10.s. $2 d$.
23. £1. 5s. 10 d .
24. (i) $2 \cdot 1875$; (ii) 37 .
25. £73. 10\%. 10 d .
26. £1. 18s. $4 d$.
27. £29. 3s. $7 d$.
28. £1. 7s. $6 d$.
29. (i) $07291 \dot{6}$; (ii) $2 \cdot 56458 \dot{3}$; (iii) $17 \cdot 8364583$.
30. 75.
1. -270 .
2. 3698.
1. 7 cwt. 2 grs.
2. $5 \frac{1}{2} d$.
3. $15 s .9{ }_{4}^{3} d$.
4. £3. 6s. 6d.
5. $\mathfrak{£} 840.10$ s. $7 \frac{1}{4} d$.
6. £3. 0 s. $7 \frac{1}{4} d$.
7. 2 cwt. 1 qr. 25 lbs .2 oz .
8. 1 fur. 28 p .3 yds .1 ft .
9. 67 yds. 1 ft .1 in .
10. (i) $\cdot \mathbf{0 2 5}$; (ii) $57142 \dot{8}$.
11. (i) $9 \mathrm{~s} .7 \cdot 92 d$. ; (ii) 08788 i .
12. (i) $£ 128.8$ s. $11 \frac{1}{2} d$. ; (ii) $1 \cdot 1132 \ldots$.
IX. Page 22. 1. 70452 .
13. $90 \cdot 28649$.
14. $\frac{3}{22}$.
15. $\frac{5}{13}$.
16. 1 .
17. 28825 .
. 1.
18. $8416 ̊$.
19. •0006.
20. 21.
1. 19s. $2 d$.

$$
2-2
$$

10. $0075 . \quad 11 . \quad £ 42 . \quad 12 . \quad 6 \frac{1}{4} d$. 13. £1. 5s. 14. £3. 18s. $7 d$.
11. 960 . $16 . \quad 3000$.
12. £179. 4\%. 19. 055.
13. •7183. $23 . \quad \cdot 111572$.
14. 8s. $5 \frac{1}{4} d$. $; \frac{135}{856}$.
15. $\frac{22565}{34598}$, or $\cdot 6537 \ldots$...
16. $9 \cdot 69$ cub. in.
17. $1 \cdot 2500$.
18. •648719.
19. £1254. 2s. 6 d .
20. £2542. 0 s. $0 \frac{1}{2} d$.
21. $2 \frac{37}{4}$.
22. 24 .
23. $103 \cdot 15$ nearly.
24. $£ 10,137.6 s .3 c$.
25. £620. 3 s. $1 \frac{1}{2} d$.
26. £4. 4s. 11 d .
27. (i) 1 ; (ii) 0001 .
28. $\frac{1}{2}$.
29. 1 .
X. Page 25 .
30. $£ 14,469.11 \mathrm{~s} .8 \mathrm{~d}$.
31. £840. 13s. $1 \frac{1}{2} d$. 7. £1832. 16s. $5 \frac{1}{2} d$. 8. £1261. 16s. 9 d.
32. 1081 tons 19 cwt.
33. £4. 0 s. $5 \frac{1}{4} d$.
34. £6389. 1s. 3d.
35. (i) £3072. 19s. $6 \frac{1}{2} d$.;
36. £1. 16s. $9_{4}^{33} d$.
37. £315. 4s.
38. £1S06. 13ヶ. $6 d$.
39. (i) £663. 1s. 11 l .
40. £578. 19s. $2 d$.
41. £123. 15s. $9 \frac{1}{4} d$.
42. £213. 10s. $1 d$.
; (ii) $£ 1209.8 s .7 \frac{3}{4} d$. 20. £359. 14s. $8 d$.
(ii) $£ 1144.0$ s. $11 \frac{1}{4} d$.
43. £2042. 12s. 10 d .
44. £127. $9 \mathrm{~s} .6 \frac{1}{4} d$.
45. £2734. 15s. $3_{4}^{\frac{1}{4}} d$.
46. £158. 8s. $8 \frac{1}{2} d$.
XI. Page 28. 1. $35: 52$.
47. $3: 8$.
48. $4: 15$.
49. $2: 7$.
50. $1 \frac{1}{2} d$.
51. £92. $13 s .4 d$.
52. $51 \frac{1}{3} \mathrm{ft}$.
53. $£ 24$.
54. £19. 3s. 1 d.
55. £34. 10 s. $7 \frac{1}{2} d$. 13. 289.
56. 324 hours.
57. $£ 6.8 s .4 d$.
58. : hours 45 min .
59. 20 tons.
60. 13 tons 16 cwt. 1 qr. 5 lbs .
61. 15s.
62. $13 s .2 d$.
63. $9: 20$.
64. £35, £14.
65. £588.
66. $19: 2$.
67. £12. 5 s. $3 d$.
68. Equal. 30. £21. 14\%. $11 d$.
69. $27: 88$.
70. $285: 184$.
71. $30: 91$.
72. 5.
1. $2: 3$.
2. 8:9.
3. 35 days.
4. $70: 99$.
5. $11 \frac{1}{4}$ days.
6. f 150 . 11 s. $1 \frac{1}{2} d$.
7. £484. 2s. $9 d$.
8. £183. 14s. $1 \frac{3}{4} d$.
9. £18,238. $9 \times .6 d$.
XII. Page 31.
10. $108 \frac{1}{2}$ tons.
11. 8 . 10. 225.
12. $3_{\frac{1}{2}}^{1}$ days.
13. 1000 .
14. $3: 2$.
15. 9 . 10
16. £103. $4 s$.
17. 20.
1. 11 days.
2. £192.
3. 36 .
4. 17 days.
XIII. Page 34.
5. $£ 13,600 ; £ 8500 ; £ 5100$.
6. £3. 7s. 6 d. ; £5. $8 s$. ; £8. $2 s$.
7. $£ 15 ; £ 20 ; £ 22.10 s . ; £ 24$.
8. £7173. 6s. Sd.; £8070; £8608; £8966. 13s. $4 d$.
9. $£ 40 ; £ 24 ; £ 16$.
10. £200; £220; £280.
11. $£ 1275$; £1575; £2250.
12. $£ 720$; £840; £1200; £1560.
13. £35. 15s.; £41. 6.s. 10d.; £59. 12s. 7 d. 12. 18 p.; 20 p.; 22 p.
14. £412. 10s.; £137. 10s. ; £825.
15. £28, 9 s . $5 \frac{1}{4} d$.; £18. 19 s . $7 \frac{1}{2} d$. . £12. 13 s , 1 d ,
16. $5 s . ; 3 s .9 d . ; 1$ s. $3 d$.
17. £25; £33. 6s. 8d.; £41. 13s. 4d. 18. £930; £46. 10s.; £581. 5s.
18. £242. 18s. 4 d. ; £215. 6s. 3d. ; £331. 5s.
19. 15 tons 15 cwt .
20. £1. 2s. 6 d. ; £1. 16s.; £1. 4 s .
21. $11,400,000 ; 17,100,000 ; 3,800,000 . \quad 25 . \quad £ 10 ; £ 40 ; £ 20$.
22. $76 \frac{1}{2} ; 68 ; 59 \frac{1}{2}$. 25. £1. 2s. ; £2. $15 s . ;$ £3. 6s. 27. £505. 4 s. $4 \frac{1}{2} d$. ; £221. 4 s. $9 \frac{1}{2} d$.

XIV. Page 38.

1. (i) 4 sq. yds. 8 sq. ft. ; (ii) 14 sq. yds. 3 sq. ft. 54 sq. in.
2. (i) 18 acres ; (ii) $12 \frac{1}{2}$ acres ; (iii) $16 \frac{1}{2}$ acres.
3. (i) 160 acres ; (ii) 47 ac. 1 r. 9 p.
4. $£ 45.2 \mathrm{~s} .6 \mathrm{~d}$.
5. £150.
6. £29. 5 s.
7. £4. 13 s. $4 d$.
8. (i) 68 yds. 2 ft .
(ii) $21 \frac{1}{4}$ chains ; (iii) 16 chains 6 links.
9. 20 ft .6 in .
10. 15 chains 25 links.
11. 1029.
1. $£ 36$.
2. $240 ; \mathrm{fl2}$.10 s .
3. £8.
4. 51 ; £9. 16 s. $6 \frac{3}{4} d$.
5. 18 feet.
6. 11 feet.
7. 1400 sq. yds. ; $444 \mathrm{sq} . \mathrm{yds}$.4 sq . ft.
8. $26 \mathrm{yds} 2 \mathrm{ft} . ; 808.$.
9. 30 yds. ; $10 \frac{3}{4}$ sq. yds. ; £7. 7 s. $3 d$.
10. 44 sq. yds. 5 sq. ft.
11. 10 .
12. $£ 6.17 \mathrm{~s} .9 \frac{3}{4} d$. 33. 10 ft .6 in .
13. 12 feet.
14. $31 \frac{1}{2} \mathrm{yds}$.
15. 27 inches.
16. 232 sq. yds.
17. $36.6 \mathrm{yds}$. ; $9 s .5 \frac{1}{2} d$.
18. 118 sq. ft.
19. $\quad 179$ sq. yds. 5 sq. ft.
20. £2. 4s. $4 d$.
21. 3s. 6d. $\quad 31$. $6 d$.
22. £1. 3s. ; 64 yds. ; £12.
XV. Page 42.
23. (i) $70 \mathrm{cu} . \mathrm{ft}$. ; (ii) $274 \mathrm{cu} . \mathrm{ft} .1080 \mathrm{cu} . \mathrm{in}$.
24. (i) $10 \frac{3}{8}$ tons; (ii) $£ 12.9 \mathrm{~s} . \quad$ 3. 400 gallons.
25. (i) 25 tons ; (ii) $£ 13.1 \mathrm{~s}$.
26. (i) £1. $6 s .3 d$. ; (ii) 1875 lbs.
27. 148 days. 7. 25,$600 ; £ 44.16$ s. 8. 65,$120 ;$ £ 97.13 s. $7 d$.
28. £4. 13s. $4 \dot{a} . \quad 10 . \quad £ 605 . \quad 11 . \quad 1275 \mathrm{lbs} . \quad 12.42 \mathrm{lbs} .3 \mathrm{oz}$.
29. $4264 \mathrm{cu} . \mathrm{in}$. ; 10s. $2_{4}^{3} d$.
30. $376 \mathrm{lbs} .13 \frac{1}{3}$ oz.
31. 305 lbs ; 664 lbs .
32. 2 ft .6 in . 17. 3 feet.
33. 4 feet. 19. $\frac{1}{4}$ inch ; 10 sq. yds. 20. 216,$000 ; 750 \mathrm{yds}$.
34. $61,256,250$ tons.
35. 247,500 .
36. 101 tons ; $22,687 \frac{1}{2}$ gallons.
37. 662,475 gallons.
38. 4 inches per hour. 25. 14,479,674.
39. 93 tons.
40. $2 \cdot 214 \mathrm{lbs}$.
41. $19,800,000$.
42. £10. 16s.
43. $4 \mathrm{ft} . ; 6.07 \mathrm{ft}$.
XVI. Page 46.
44. 97.
1. 132.
1. 1003.
1. $1 \frac{1}{12}$.
2. 4321.
1. $31 \cdot 6$.
2. $2 \frac{11}{13}$.
3. $9 \cdot 99$.
4. 01263 . 25. $2 \cdot 8 \dot{3}$.
5. $1 \cdot 732$. 30. $3 \cdot 162$.
6. •845. 35. •853.
7. $219 \mathrm{yds} \quad$ 39. $\quad 86 \mathrm{yds}$.
8. 1458 yds.
9. 1974.
1. $\quad 2907$.
2. 24.
1. 193.
1. 3702 .
2. $10 \frac{1}{13}$.
3. $\quad 37 \cdot 19$.
4. 57.
1. 89 .
2. 547.
1. 409.
1. 34021.
1. $1 \frac{3}{4}$.
2. $49 \frac{5}{98}$.
3. $1 \frac{5}{8}$.
4. $1 \cdot 41 \dot{6}_{\text {. }}$
5. $1: 581$.
6. $57 \cdot 13$.
7. $52 \cdot 004$.
8. $503 \cdot 08$. $28 . \quad 1 \cdot 414$.
9. $\quad 265$. 33 . $1 \cdot 183$.
10. (i) 354 ; (ii) $1 \cdot 5811$.
11. 308 yds .
12. 18 feet.
13. 249 yds .
14. £41. 14s. 9d. 45. 137 feet.
15. 520 feet.
16. -0371.
17. 379 . $55 . \quad 714 . \quad 56 . \quad-2258$.
18. $1 \cdot 3476 ; 1 \cdot 3454 ; 13460 ; \cdot 0010$.
19. $\quad 177 \cdot 39$ yds. $\quad 62 . \quad 17 \cdot 8885$ feet.
20. 27300.
1. 69099.
1. $12 \cdot 079$.
2. $2 \cdot 887$.
3. $7556 . \quad 58 . \quad 2 \cdot 2804$.
4. 98 yds. 1 ft. 2 in.
5. 12 minutes (nearly).
XVII. Page 48. 1. 8. 2. 11. 3. 15. 4. 25.
6. $47 . \quad$ 6. $58 . \quad$ 7. $76 . \quad$ 8. $95 . \quad$ 9. 543.
7. 205.
1. 578.
1. 9 .
2. 8.5 .
3. $40 \cdot 1$.
4. $2 \cdot 57$.
5. 1%.
6. 3%.
7. 141.2.
8. $5 \frac{1}{2}$.
9. $2 \frac{2}{7}$.
10. $1 \cdot 71$.
11. $1 \cdot 91$.
12. 76 .
13. $2 \cdot 63$.
14. $5 \cdot 96$.
15. 1 ft .8 in.; 16 sq . ft. 96 sq . in.
16. $759 \frac{3}{8} \mathrm{sq}$. ft. 36 . 60.5 inches.
17. $\quad 17 \cdot 15$ inches. $\quad 39$. $\quad 18 \cdot 6$.
18. (i) $\cdot 646$; (ii) $\cdot 965$; (iii) $2 \cdot 502$.

XVIII. Page 52.

1. (i) 58.073 m .; (ii) 5807.3 cm .; (iii) $\cdot 058073 \mathrm{Km}$.
2. (i) 3400.902 m .; (ii) 340.0902 Dm .; (iii) 34009.02 dm .
3. (i) 78.01 m .; (ii) 78010 mm .; (iii) 7 Dm .8 m .1 cm .
4. (i) 804602 ; (ii) $804 \cdot 602$; (iii) 8 Hm .4 m .6 dm .2 mm .
5. (i) 1 Km .; (ii) 1 Km .
6. (i) 20 Km .1 m .; (ii) 2 Km . 1 Hm .8 dm .4 cm .
7. (i) 5 Km .8 m .3 dm .; (ii) 4 Hm .6 Dm .9 m .8 dm .3 cm .
8. £660. 16.s. 9. £502. 10. £45. 9s. 10 d . 11. $45 \cdot 45 \mathrm{grms}$.
9. (i) 0000325 ; (ii) 00005 . 13. (i) 000748 ; (ii) 7480.
10. (i) $69042 \cdot 0489$; (ii) $6 \cdot 90420489$; (iii) $18,709,350$.
11. 40 centimes.
12. 8250 fr .
13. 120 m .
14. 10298•75.
15. (i) $5 \cdot 957 \mathrm{Ha}$; (ii) $27 \cdot 43140625 \mathrm{Ha}$. 18. (i) 24 cm . (ii) 75 cm . 19. 28072.
16. (i) 700 litres ; (ii) $6482 \cdot 1$ litres.
17. $117 \cdot 48$.
18. 1242 tonneaux.

XIX. Page 55.

2. (i) £33. 0s. 7d.
3. (i) 1174.73 ; (ii.) 2573.27 .
4. £5. 19s. 6d.
(ii) $£ 53.14 s .9 \frac{1}{2} d$.
5. $25 \cdot 21$ francs.
6. $161 \frac{3}{4}$.
7. $1 \mathrm{~s} .3 \mathrm{l} . \quad 8 . \quad \cdot 13 \mathrm{inch}$.
8. 51 yds .
9. 9 yds. $1 \mathrm{ft} . \mathrm{S} \frac{1}{2}$ in. (nearly). 13.7022.
10. 18. (nearly).
1. $2 \cdot 237$.
2. 953 grammes.
3. $836 \cdot 11$.
4. $27 \cdot 56$.
5. $1 \cdot 76$.
6. $935 \cdot 41$.
7. 33.
1. $160 \cdot 9315$.
2. 1226.

XX. Page 58.

1. $\frac{7}{200}$.
2. $\frac{2}{45}$.
3. $\frac{7}{125}$.
4. $\frac{1}{16}$.
5. $\frac{9}{160}$.
6. $\frac{9}{175}$.
7. 40%.
8. $33 \frac{1}{3} \%$.
9. $13 \frac{1}{2} \%$.
10. $7 \frac{1}{2} \%$.
11. $37 \frac{1}{2} \%$.
12. (i) $\mathfrak{£ 7 0}$;
(ii) £69. 6s. Sd.
(iii) £71. $13 s .4 d$.
13. £240.
14. 6%.
15. $£ 408$.
16. £350. 14 s.
17. $4 s .2 d$.
18. 600 .
19. $£ 8000$.
20. $4 \frac{7}{1} \%$.
21. 15%.
22. £330.4s. 6 d .
23. $52 \frac{1}{1} \frac{1}{2} \%$.
24. 47.
1. $83 \frac{1}{3}$ acres.
XXI. Page 61. 1. $33_{\%}^{\frac{1}{5}} \%$.
2. $4 \frac{2}{5} \%$.
3. 12% gain.
4. $26 \frac{2}{3} \%$.
5. 50%.
6. £21. $17 \% .6 \mathrm{~d}$.
7. £40. 10 s.
8. £16.
9. £52. 10 .
10. $£ 90.8 \% .4 d$.
11. $24 \frac{2}{5} \%$ loss.
12. £7. 8 s. 9 rl. $\quad 13 . \quad 30 \%$; £22. 10 s. 14. 14% 15. £428.
13. $62 \frac{1}{2} \%$. 17. $30 \frac{5}{6}{ }_{4} \%$.
14. 7% loss.
15. 10%.
16. £40.
17. £75.
18. £8. 6s. Sil.
19. £40.
20. $£ 875 ; 7 \frac{1}{2} \frac{1}{7} \%$ 25. $18 \frac{1}{2} \frac{4}{6} \%$. 26. $28 \frac{4}{7} \%$ 27. £2. $6 s .3 d$.
21. $40 \frac{5}{8} \%$.
XXII. Page 63.
22. £1. 5s. $10 \frac{1}{2} d$.
23. £20. $13 s .10 \frac{1}{2} d$.
24. £62. 10
θ
25. $4 \frac{1}{2} \frac{6}{1} \%$.
26. £2. 11 s. $10 \frac{1}{4} d$.
27. $£ 6.9$ s. $8 d$.
28. £8. 0 s. $5 d$.
29. £16. 16 s. $6 \frac{1}{4}$ cl.
30. £27. 8%. $7 d$.
31. Author, £678. 13s. 4d.; Publisher, £168; Bookseller, £195.
32. £223. 1s. 10 d ,
33. £1439, 5 s,
34. £76. 19s. 9d.
XXIII. Page 66.
35. $£ 40.10 \mathrm{~s}$.
36. £126. $11 s .3 d$.
37. £27. 9 s. $2 \frac{1}{4} d$.
38. £84. $17 s .8 d$.
39. £31. 7s. 10 d .
40. £2533. 11s. $11 d$.
41. £112. 10 s.
42. £219. 7 s .6 d .
43. £123. $10 s .3 d$.
44. £19. $6 s .7 \frac{1}{4} d$.
45. $\mathfrak{£ 3 4 4 .} 15 s .4 d$.
46. £869. $8 s .5 d$.
47. £1406. 10 s. 3 d.
48. £405.
49. £271. $13 s .9 \mathrm{~d}$.
50. £683. 11 s. $8 \frac{1}{4} \mathrm{~d}$.
51. £295. 17 s .5 d .
52. £148. 17s. $4 d$.
53. £222. 18s. 5 d.
XXIV. Page 68.
54. 10 years
55. 9 years.
56. $3 \frac{3}{4}$ years.
57. $6 \frac{1}{2}$ years.
58. $2 \frac{3}{4}$ years.
59. 219 days.
60. 24 years.
61. $5 \frac{1}{4} \%$.
62. $3 \frac{1}{3} \%$.
63. 100 days.
64. $5 \frac{3}{4} \%$.
65. $4 \frac{1}{2} \%$.
66. 4%.
67. 8%.
68. £276. 7s. 1 d .
69. £15:25.
70. $4 \frac{2}{3} \%$.
71. $3 \frac{1}{2} \%$.
72. £381. 15s. 5d.
73. £゚252. 1s. 8d.
74. $3 \frac{1}{5} \%$.
75. £243. 7s. 2d.
76. £3245. 12s. $3 d$.
XXV. Page 72.
77. £1157. 12s. 6d.
78. £494. 5s. $5 d$.
79. £89. $9 \mathrm{~s} .10 \frac{1}{2} \mathrm{l}$.
80. £426. 11 s .9 d .
81. £4104, 18s. 9 d.
82. £246. 7s. $8 d$.
83. £390. 12s. $7 d$.
84. £48. $9 s .6 d$.
85. £325. 5s. 4 d .
86. £461. 13 s .
87. £161. 5s.
88. £54. $14 s .3 d$.
89. £4S. 4 s .11 d .
90. £340. 7s. 8d.
91. £3125.
92. £239. 17s. $2 d$.
93. £666. 13s. 4 d.
94. £3255. 4s. 2d.

17 £53. 6s. 10 l .
20. £240.
XXVI. Page 74.

1. £240. 2. £175.
2. £1137. 10s.
3. £275. 5. £320. 6. £162.
4. £13. $2 s .6 d$.
5. £1. 15 s.
6. £3. 5s. $1 d$.
7. £160.
8. $3 \frac{3}{4} \%$.
9. £2015.
10. 5%.
11. £254. 1s. 2d.
12. £55l. $0 s .10 d$.
13. £12.
14. £3.
15. £1250. 21. £987. 10s.; £987. 13s. 1d.
16. £23. $6 s .9$.; £227. 12s. 23. £3. 15 s. £ 78.2 s .6 d .
XXVII. Page 77.
17. £2660.
18. $£ 600$.
19. £3911. 6s. 10d. 8. £4125. 12s. 6d.
20. £19. 7s.
21. £252. 15. £1200.
22. £45.
23. £12,705. 12s. 6d.; £438. 2s. 6d.
24. $88: 91$. 20. The former ; $12 s .6 d$.
25. $£ 4000$; £ 4250 ; £ 12,000 . 23. £525 ; £28. 24. £3250. E.C.
26. $£ 400$.
27. $£ 4000$.
28. £3136. 10 s.
29. £2598. 5.s.
30. £34. 2 .
31. £14. 7s.

G
XXVIII. Page 80. 1. £400. 2. £6000. 3. £1295; £42.
4. $3 \frac{4}{7} \%$.
5. £8268. 6s. $8 d$.
6. $95 \frac{3}{8}$.
7. £24 less.
8. £17. 3 s .9 d. ; gain. 9. £70; £3. 6s. 8 d . 10. £132. 18s.; loss.
11. No alteration.
12. £98. 13. £500.
14. $£ 18$.
15. £9. 11s. $3 d$.
16. £2112.
18. £5.
19. $155: 147$.
17. £133. 6 s .8 d .
21. $2 \frac{6}{7}$ years.
22. £3930; £123. 13s. ${ }^{2} d$.
23. 3.35%; £50. 5 s. 3 d. ; £7680; £211. 4 s.
24. £667. 10 s. $25.3 \frac{1}{3}$. 26. £11. 18s. $4 d$.
XXIX. Page 84.

1. 5 days.
2. 60 days.
3. $22 \frac{1}{2}$ days.
4. $4 \frac{4}{5}$ hours. 5. $\frac{15}{38}$ hours. 6. 30 days. 7. 1 hour; 4 min .
5. 32 min .
6. $A, 261 \frac{3}{17}$ days ; $B, 120$ days.
7. $A, 24$ shillings; $B, 18$ shillings. 11. 35 days. 12. £3. 5s.
8. 45 days. $14 . \quad £ 12.9$ s. 15. 11 days. 16. $5: 4$.
9. $8: 9$. 18. $28_{\frac{4}{5}}^{4}$ miles. 19. $34 \frac{1}{6}$ miles. 20. $B ; 4 \frac{23}{48}$ feet.
XXX. Page 87.
10. $32 \frac{8}{11}$ min. past 6 .
11. (i) 322_{11}^{5} min. past 3 ; (ii) 17_{11}^{5} min. past 3 .
12. At $7 \frac{7}{11}$ min. past 4 and at 36 min . past 4 .
13. 3 o'clock.
14. At 12 o'clock, 60 days after ; 16 min . past 12.
15. 12 min. past 5 р.м. on Thursday.
16. On 24th April at 2 р.м. ; 1.44 Р.м. ; 2.14 Р.м.
17. 3 shillings.
18. $£ 12$.
19. $1 \frac{1}{2}$ ewt.
20. 10 gulden.
21. $2: 1$.
22. $3: 4$.
23. $19: 26$.
24. $19: 10$.
25. $11: 80$.
26. 176 yards.
27. B, by 4 secs. ; $A, 320$ secs. ; $B, 316$ secs.
28. . 2 min . $; \frac{1}{2}$ mile.
29. A and C win ; B loses ; $\frac{1}{17}$ min.
30. A, £1. 7s. ; B, £1. 2s. 6d. ; C, 18 s.

ALGEBRA.

CHAPTER I.

Definitions. Substitutions.

1. Algebra treats of quantities as in Arithmetic, but with greater generality ; for while the quantities used in arithmetical processes are denoted by figures which have a single definite value, algebraical quantities are denoted by symbols which may have any value we choose to assign to them. The symbols used are letters, and it is understood that throughout the same piece of work a symbol keeps the same value. Thus, when we say "let $a=1$," we do not mean that a must have the value 1 always, but only in the particular example we are considering.

We begin with the definitions of Algebra, premising that the signs,,$+- \times, \div$ will have the same meanings as in Arithmetic.
2. When two or more quantities are multiplied together the result is called the product. In Arithmetic the product of 2 and 3 is written 2×3, whereas in Algebra the product of a and b may be written in any of the forms $a \times b, a . b$, or $a b$. The form $a b$ is the most usual. Thus, if $a=2, b=3$, the product $a b=a \times b=2 \times 3=6$; but in Arithmetic 23 means "twentythree," or $2 \times 10+3$.
3. Each of the quantities multiplied together to form a product is called a factor of the product. Thus $5, a, b$, are the factors of the product $5 a b$.
4. When one of the factors of a product is a numerical quantity, it is called the coefficient of the remaining factors. Thus, in $5 a b, 5$ is the coefficient. Sometimes any factor, or factors, of a product may be regarded as the coefficient of the remaining factors. Thus, in the product $6 a b c, 6 a$ may be called
the coefficient of $b c$. A coefficient which involves letters is called a literal coefficient.

Note. When the coefficient is unity it is usually omitted. Thus we do not write la, but simply a.
5. An algebraical expression is a collection of symbols; it may consist of one or more terms. Terms are separated from each other by the signs + and - . Thus $7 a+5 b-3 c-x+2 y$ is an expression consisting of five terms.

Note. When no sign precedes a term the sign + is understood.
6. Expressions are either simple or compound. A simple expression consists of one term, as $5 a$. A compound expression consists of two or more terms. An expression of two terms, as $3 a-2 b$, is called a binomial expression; one of three terms, as $2 a-3 b+c$, a trinomial ; one of more than three terms a multinomial. Simple expressions are also spoken of as monomials.
7. If a quantity be multiplied by itself any number of times, the product is called a power of that quantity, and is expressed by writing the number of factors to the right of the quantity and above it. . Thus
$\alpha \times \alpha$ is called the second power of α, and is written a^{2};
$\alpha \times a \times a$. third power of $a, \ldots \ldots a^{3}$;
and so on.
The number which expresses the power of any quantity is called its index or exponent. Thus 2, 5, 7 are respectively the indices of a^{2}, a^{5}, a^{7}.

Note. a^{2} is usually read " a squared"; a^{3} is read " a cubed"; a^{4} is read " a to the fourth"; and so on.

When the index is unity it is omitted, and we do not write α^{1}, but simply α. Thus $\alpha, 1 \alpha, a^{1}, 1 \alpha^{1}$ all have the same meaning.
8. It is very important to distinguish between coefficient and index.

Example 1. If $b=5$, distinguish between $4 b^{2}$ and $2 b^{4}$.

$$
\begin{array}{cl}
\text { Here } & 4 b^{2}=4 \times b \times b=4 \times 5 \times 5=100 ; \\
\text { whereas } & 2 b^{4}=2 \times b \times b \times b \times b=2 \times 5 \times 5 \times 5 \times 5=1250 .
\end{array}
$$

Example 2. If $a=4, x=1$, find the value of $5 x^{a}$.
Here $\quad 5 x^{a}=5 \times x \times x \times x \times x=5 \times 1 \times 1 \times 1 \times 1=5$.

Note. Every power of 1 is 1 .

9. In Arithmetic the factors of a product may be written in any order. Thus, for example,

$$
3 \times 4=4 \times 3,
$$

and

$$
3 \times 4 \times 5=4 \times 3 \times 5=4 \times 5 \times 3
$$

In like manner in Algebra $a b$ and $b a$ have the same value. Again, the expressions $a b c, a c b, b a c, b c a, c a b, c b a$ have the same value, each denoting the product of the three quantities a, b, c. It is immaterial in what order the factors of a product are written ; it is usual, however, to arrange them in alphabetical order.

Example. If $a=6, x=7, z=5$, find the value of $\frac{13}{10} a x z$.
Here

$$
\frac{13}{10} a x z=\frac{13}{10} \times 6 \times 7 \times 5=273 .
$$

EXAMPLES I. a.

If $\alpha=7, b=2, c=1, x=5, y=3$, find the value of

1. $14 x$.
2. x^{3}.
3. $3 a x$.
4. a^{3}.
5. $5 b y$.
6. b^{5}.
7. $9 b^{4}$.
8. $8 b c y$.
9. $7 y^{3}$.
10. $8 x^{2}$.

If $a=8, b=5, c=4, x=1, y=3$, find the value of
11. $9 x y$.
12. $8 b^{3}$.
13. $3 x^{5}$.
14. x^{8}.
15. $7 y^{4}$.
16. c^{x}.
17. b^{y}.
18. y^{c}.
19. x^{b}.
20. y^{b}.

If $a=5, b=1, c=6, x=4$, find the value of
21. $\frac{3}{8} x^{3}$.
22. 3^{x}.
23. 8^{b}.
24. $\frac{7}{15} a c x .25 . \quad \frac{x^{5}}{64}$.
10. When powers of several different quantities are multiplied together a notation similar to that of Art. 7 is adopted. Thus $a a b b b b c d d d$ is written $a^{2} b^{4} c d^{3}$. And conversely $7 a^{3} c d^{2}$ has the same meaning as $7 \times \alpha \times a \times \alpha \times c \times d \times d$.

Example 1. If $c=3, d=5$, find the value of $16 c^{4} d^{3}$.
Here $16 c^{4} d^{3}=16 \times 3^{4} \times 5^{3}=\left(16 \times 5^{3}\right) \times 3^{4}=2000 \times 81=162000$.
Example 2. If $p=4, q=9, r=6, s=5$, find the value of $\frac{32 q r^{3}}{81 p^{s}}$.
Here $\quad \frac{32 q^{3}}{81 p^{8}}=\frac{32 \times 9 \times 6^{3}}{81 \times 4^{5}}=\frac{32 \times 9 \times 6 \times 6 \times 6}{81 \times 4 \times 4 \times 4 \times 4 \times 4}=\frac{3}{4}$.
11. If one factor of a product is equal to 0 , the product must be equal to 0 , whatever values the other factors may have. Thus, if $x=0$, then $a b^{3} x y^{2}=0$ whatever be the values of a, b, y. Again if $c=0$, then $c^{2}=0, c^{3}=0$, and every power of 0 is 0 .

EXAMPLES I, b.

If $a=7, b=2, c=0, x=5, y=3$, find the value of

1. $4 a x^{2}$.
2. $a^{3} b$.
3. $8 b^{2} y$.
4. $3 x y^{2}$.
5. $\frac{3}{4} b^{2} x$.
6. $\frac{5}{6} b^{3} y^{2}$.
7. $\frac{2}{5} x y^{4}$.
8. $a^{3} c$.
9. $a^{2} c y$.
10. $8 x^{3} y$.

If $a=2, b=3, c=1, p=0, q=4, r=6$, find the value of
11. $\frac{3 a^{2} r}{8 b}$.
12. $\frac{8 a b^{2}}{9 q^{2}}$.
13. $\frac{6 a^{3} c}{b^{2}}$.
14. $\frac{4 c r^{2}}{9 a^{3}}$.
15. $3 a^{2} b^{c}$.
16. $\frac{8 b^{q}}{9 a^{r}}$.
17. $5 a^{b} c^{r}$.
18. $\frac{2 a^{2} p}{7 r}$.
19. $\frac{5 a^{r} b^{q}}{64 r^{a}}$.
20. $\frac{27 a^{q}}{32}$.
12. In the case of expressions which contain more than one term, each term can be dealt with singly by the rules already given, and by combining the terms the numerical value of the whole expression is obtained. When brackets () are used, they will have the same meaning as in Arithmetic, indicating that the terms enclosed within them are to be considered as one quantity.

Example 1. When $c=5$, find the value of $c^{4}-4 c+2 c^{3}-3 c^{2}$.
The expression $=5^{4}-4 \times 5+2 \times 5^{3}-3 \times 5^{2}$.

$$
=625-20+250-75=780 .
$$

Example 2. If $a=2, b=0, x=5, y=3$, find the value of

$$
5 a^{3}-a b^{2}+2 x^{2} y+3 b x y
$$

The expression $=\left(5 \times 2^{3}\right)-0+\left(2 \times 5^{2} \times 3\right)+0$

$$
=40+150=190 \text {. }
$$

Example 3. When $a=5, b=3, c=1$, find the value of

$$
\frac{(a-b)^{2}}{a+b}+\frac{(b-c)^{2}}{b+c}+\frac{(a-c)^{2}}{a+c}
$$

The expression $=\frac{(5-3)^{2}}{5+3}+\frac{(3-1)^{2}}{3+1}+\frac{(5-1)^{2}}{5+1}$

$$
=\frac{2^{2}}{8}+\frac{2^{2}}{4}+\frac{4^{2}}{6}=\frac{4}{8}+\frac{4}{4}+\frac{16}{6}=\frac{1}{2}+1+2 \frac{2}{3}=4 \frac{1}{6} .
$$

13. Definition. The square root of any proposed expression is that quantity whose square, or second power, is equal to the given expression. Thus the square root of 81 is 9 , because $9^{2}=81$.

The square root of α is denoted by $\sqrt[2]{ } a$, or more simply $\sqrt{ } a$.
Similarly the cube, fourth, fifth, etc., root of any expression is that quantity whose third, fourth, fifth, etc., power is equal to the given expression.

The roots are denoted by the signs $\sqrt[3]{ }, \sqrt[4]{ }, \sqrt[5]{ }$, etc.

Examples.

$$
\begin{aligned}
& \sqrt[3]{27}=3 ; \text { because } 3^{3}=27 \\
& \sqrt[5]{52}=2 ; \text { because } 2^{5}=32 .
\end{aligned}
$$

The sign $\sqrt{ }$ is sometimes called the radical sign.
Example 1. Find the value of $5 \sqrt{ }\left(6 a^{3} b^{4} c\right)$, when $a=3, b=1, c=8$.

$$
\begin{aligned}
5 \sqrt{ }\left(6 a^{3} b^{4} c\right) & =5 \times \sqrt{ }\left(6 \times 3^{3} \times 1^{4} \times 8\right)=5 \times \sqrt{ }(6 \times 27 \times 8) \\
& =5 \times \sqrt{ } 1296=5 \times 36=180 .
\end{aligned}
$$

Note. An expression like $\sqrt{ }\left(6 a^{3} b^{4} c\right)$ is sometimes written in the form $\sqrt{6 a^{3} b^{4} c}$, the line above being used with the same meaning as the brackets to indicate the square root of the expression taken as a whole.
Example 2. Find the value of $\sqrt[3]{ }\left(\frac{a b^{4}}{8 x^{3}}\right)$, when $a=9, b=3, x=5$.

$$
\sqrt[3]{\left(\frac{a b^{4}}{8 x^{3}}\right)}=\sqrt[3]{\frac{9 \times 3^{4}}{8 \times 5^{3}}}=\sqrt[3]{\frac{9 \times 81}{8 \times 125}}=\sqrt[3]{\frac{9 \times 9 \times 9}{1000}}=\frac{9}{10} .
$$

Example 3. When $p=9, r=6, k=4$, find the value of

$$
\frac{1}{3} \sqrt[3]{\left(\frac{p r}{k^{2}}\right)+\sqrt{ }(5 p+3 r+1)-\frac{2 r^{2}}{9 k}}
$$

$$
\left.\frac{1}{3} \sqrt[3]{(} \frac{p r}{k^{2}}\right)+\sqrt{ }(5 p+3 r+1)-\frac{2 r^{2}}{9 k}=\frac{1}{3} \sqrt[3]{\frac{54}{16}}+\sqrt{45+18+1}-\frac{2 \times 36}{9 \times 4}
$$

$$
=\frac{1}{3} \sqrt[3]{\frac{27}{8}}+\sqrt{64}-2
$$

$$
=\frac{1}{3} \times \frac{3}{2}+8-2=6 \frac{1}{2} .
$$

EXAMPLES I. c.

If $a=4, b=1, c=3, f=5, g=7, h=0$, find the value of

1. $3 f+5 h-7 b$.
2. $7 c-9 h+2 a$.
3. $4 g-5 c-9 b$.
4. $3 a-9 b+c$.
5. $2 f-3 g+5 a$.
6. $3 c-4 a+7 b$.
7. $7 c+5 b-4 a+8 h+3 g$.
8. $9 b+a-3 g+4 f+7 h$.
9. $f^{2}-3 a^{2}+2 c^{3}$. 10. $b^{3}-2 h^{3}+3 a^{2}$. 11. $3 b^{2}-2 b^{3}+4 h^{2}-2 h^{4}$.
10. $\frac{(a-b)^{2}}{(c+h)^{2}}+\frac{2(b-h)}{3(g-f)^{2}}$.
11. $\frac{(a+b+g)^{2}}{(f+c-h)^{2}}-\frac{7(f-c)^{3}}{3(b+g)}$.

If $a=8, b=6, c=1, x=9, y=4$, find the value of
14. $\frac{5}{3} a-\frac{1}{9} b^{3}+\frac{7}{8} y^{2}$.
15. $\frac{5}{{ }^{2} 7} a x-\frac{32}{y^{2}}-\frac{6 a}{c x y}$.

18. $\frac{3}{4} a c-\sqrt{\frac{b^{2}}{9 y}}-\sqrt{\frac{b y}{x^{2}}}$.
19. $\frac{5 b^{2} y^{3}}{12 a^{2} x}-\sqrt[3]{\frac{x^{4} a}{b^{2} y^{2}}}+\sqrt{\frac{a b^{3}}{3 x}}$.

CHAPTER II.

Negative Quantities. Addition.

14. Definition. Algebraical quantities which are preceded by the sign + are said to be positive; those to which the sign - is prefixed are said to be negative.
15. In Arithmetic the sum of the positive or additive terms is always greater than the sum of the negative or subtractive terms; if the reverse were the case the result would have no arithmetical meaning. In Algebra, however, not only may the sum of the negative terms exceed that of the positive, but a negative term may stand alone, and yet have a meaning quite intelligible.

This idea may be made clearer by one or two simple illustrations.
(i.) Suppose a man were to gain $£ 100$ and then lose $£ 70$, his total gain would be $£ 30$. But if he first gains $£ 70$ and then loses $£ 100$ the result of his trading is a loss of $£ 30$.

The corresponding algebraical statements would be

$$
\begin{aligned}
& £ 100-£ 70=+£ 30, \\
& £ 70-£ 100=-£ 30,
\end{aligned}
$$

and the negative quantity in the second case is interpreted as a debt, that is, a sum of money equal in value but opposite in character to the positive quantity, or gain, in the first case.
(ii.) Again, suppose a man starting from a given point were to row 60 yards up a stream, and then drift down with the current for 40 yards, his distance from the starting point would be 20 yards up stream. But if he had rowed 40 yards up stream and then drifted down 60 yards, his distance from the starting point would be 20 yards down stream. Thus we see that -20 yards denotes a distance equal in magnitude but opposite in direction to that denoted by +20 yards.
(iii.) The freezing point on a Centigrade thermometer is marked zero, and a temperature of $15^{\circ} \mathrm{C}$. means 15° above the freezing point, while a temperature 15° below the freezing point is indicated by $-15^{\circ} \mathrm{C}$.
16. Definition. When terms do not differ, or when they differ only in their numerical coefficients, they are called like, otherwise they are called unlike. Thus $3 a, 7 \alpha ; 5 a^{2} b, 2 \alpha^{2} b$; $3 a^{3} b^{2},-4 a^{3} b^{2}$ are pairs of like terms ; and $4 a, 3 b ; 7 a^{2}, 9 a^{2} b$ are pairs of unlike terms.

The rules for adding like terms are
Rule I. The sum of a number of like terms is a like term.
Rule II. If all the terms are positive, add the coefficients.
Example. Find the value of $8 \alpha+5 a$.
Here we have to increase 8 things by 5 like things, and the aggregate is 13 of such things ;
for instance,
$8 \mathrm{lbs} .+5 \mathrm{lbs} .=13 \mathrm{lbs}$.
Hence also,
$8 a+5 a=13 a$.
Similarly,

$$
8 a+5 a+a+2 a+6 a=22 a .
$$

Rule III. If all the terms are negative, add the coefficients numerically and prefix the minus sign to the sum.

Example. To find the sum of $-3 x,-5 x,-7 x,-x$.
Here the word sum indicates the aggregate of 4 subtractive quantities of like character. In other words, we have to take away successively 3, 5, 7, l like things, and the result is the same as taking away $3+5+7+1$ such things in the aggregate.

Thus the sum of $-3 x,-5 x,-7 x,-x$ is $-16 x$.
Rule IV. If the terms are not all of the same sign, add together separately the coefficients of all the positive terms and the coefficients of all the negative terms; the difference of these two results, preceded by the sign of the greater, will give the coefficient of the sum required.

Example 1. The sum of $17 x$ and $-8 x$ is $9 x$, for the difference of 17 and 8 is 9 , and the greater is positive.

Example 2. To find the sum of $8 a,-9 a,-a, 3 a, 4 a,-11 a, a$.
The sum of the coefficients of the positive terms is 16 .
negative............ 21.
The difference of these is 5 , and the sign of the greater is negative; hence the required sum is $-5 a$.

We need not, however, adhere strictly to this rule, for the terms may be added or subtracted in the order we find most convenient.

This process is called collecting terms.
17. When quantities are comnected by the signs + and - , the resulting expression is called their algebraical sum.

Thus $11 a-27 a+13 a=-3 \alpha$ states that the algebraical sum of $11 \alpha,-27 a, 13 \alpha$ is equal to -3α.

Example. Find the algebraical sum of $\frac{2}{3} \alpha, 3 a,-\frac{1}{6} \alpha,-2 \alpha$,
The sum

$$
=3 \frac{2}{3} \alpha-2 \frac{1}{6} \alpha=1 \frac{1}{2} a=\frac{3}{2} \alpha .
$$

Note. The sum of two quantities numerically equal but with opposite signs is zero. Thus the sum of $5 a$ and $-5 a$ is 0 .

EXAMPLES II. a.

Find the sum of

1. $2 a, 3 a, 6 a, a, 4 a$.
2. $2 p, p, 4 p, 7 p, 6 p, 12 p$.
3. $-2 x,-6 x,-10 x,-8 x$.
4. $-21 y,-5 y,-3 y,-18 y$.
5. $2 x y,-4 x y,-3 x y, x y, 7 x y$.
6. $a b c,-3 a b c, 2 a b c,-5 a b c$.

Find the value of
13. $-9 a^{2}+11 a^{2}+3 \alpha^{2}-4 a^{2}$.
15. $a^{2} b^{2}-7 a^{2} b^{2}+S a^{2} b^{2}+9 a^{2} b^{2}$.
17. $9 a b c d-11 a b c d-41 a b c d$.
19. $\frac{1}{2} x-\frac{1}{3} x+x+\frac{2}{3} x$.
2. $4 x, x, 5 x, 6 x, 8 x$.
4. $d, 9 d, 3 d, 7 d, 4 d, 6 d, 10 d$.
6. $-3 b,-13 b,-19 b,-5 b$.
8. $-4 m,-13 m,-17 m,-59 m$.
10. $5 p q,-8 p q, 8 p q,-4 p q$.
12. $-x y z,-2 x y z, 7 x y z,-x y z$.
21. $-5 b+\frac{1}{4} b-\frac{3}{2} b+2 b-\frac{1}{2} b+\frac{7}{4} b$.
22. $-\frac{5}{3} x^{2}-2 x^{2}-\frac{2}{3} x^{2}+x^{2}+\frac{1}{2} x^{2}+\frac{11}{6} x^{2}$.
18. When a number of quantities are connected together by the signs + and - , the value of the result is the same in whatever order the terms are taken.

Thus $a-b+c$ is equivalent to $a+c-b$, for in the first of the two expressions b is taken from a, and c added to the result; in the second c is added to a, and b taken from the result. Similarly in the case of any expression we may write the terms in any order we please.

Thus it appears that the expression $a-b$ may be written in the equivalent form $-b+a$.

To illustrate this we may suppose, as in Art. 15, that a represents a gain of a pounds, and $-b$ a loss of b pounds : it is clearly immaterial whether the gain precedes the loss, or the loss precedes the gain.
19. The expression $8+(13+5)$ means that 13 and 5 are to be added and their sum added to 8 . It is clear that 13 and 5 may be added separately or together without altering the result.

Thus

$$
8+(13+5)=8+13+5=26
$$

Similarly $a+(b+c)$ means that the sum of b and c is to be added to a.

Thus

$$
a+(b+c)=a+b+c
$$

$8+(13-5)$ means that to 8 we are to add the excess of 13 over 5 ; now if we add 13 to 8 we have added too much by 5 , and must therefore take 5 from the result.

Thus $\quad 8+(13-5)=8+13-5=16$.
Similarly $a+(b-c)$ means that to a we are to add b, diminished by c.

Thus

$$
a+(b-c)=a+b-c
$$

In like manner,

$$
a+b-c+(d-e-f)=a+b-c+d-e-f
$$

By considering these results we are led to the following rule:
Rule. When an expression within brackets is preceded by the sign + , the brackets can be removed without making any change in the expression.
20. The expression $a-(b+c)$ means that from a we are to take the sum of b and c. The result will be the same whether b and c are subtracted separately or in one sum. Thus

$$
a-(b+c)=a-b-c
$$

Again, $a-(b-c)$ means that from a we are to subtract the excess of b over c. If from a we take b we get $a-b$; but by so doing we shall have taken away too much by c, and must therefore add c to $a-b$. Thus

$$
a-(b-c)=a-b+c .
$$

In like manner,

$$
a-b-(c-d-e)=a-b-c+d+e
$$

Accordingly the following rule may be enunciated:
Rule. When an expression within brackets is preceded by the sign -, the brackets may be removed if the sign of every term within the brackets be changed.
21. When two or more like terms are to be added together we have seen that they may be collected and the result expressed as a single like term. If, however, the terms are unlike they cannot be collected; thus in finding the sum of two unlike quantities α and b, all that can be done is to connect them by the sign of addition and leave the result in the form $a+b$.

Also by the rules for removing brackets, $a+(-b)=a-b$; that is, the algebraic sum of a and $-b$ is written in the form $a-b$.

Example 1. Find the sum of $3 a-5 b+2 c ; 2 a+3 b-d ;-4 a+2 b$.
The sum $=(3 a-5 b+2 c)+(2 a+3 b-d)+(-4 a+2 b)$
$=3 a-5 b+2 c+2 a+3 b-d-4 a+2 b$
$=3 a+2 a-4 a-5 b+3 b+2 b+2 c-d$
$=a+2 c-d$,
by collecting like terms.
The addition is, however, more conveniently effected by the following rule:

Rule. Arrange the expressions in lines so that the like terms may be in the same vertical columns: then add each column beginning with that on the left.
$3 a-5 b+2 c$
$2 a+3 b-d$
$-4 a+2 b$

The algebraical sum of the terms in the first column is a, that of the terms in the second column is zero. The single terms in the third and fourth columns are brought down without change.

Example 2. Add together $-5 a b+6 b c-7 a c ; ~ 8 a b+3 a c-2 a d$; $-2 a b+4 a c+5 a d ; \quad b c-3 a b+4 a d$.
$-5 a b+6 b c-7 a c$

$8 a b$	$+3 a c-2 a d$
$-2 a b$	$+4 a c+5 a d$
$-3 a b+b c r$	$+4 a d$
$-2 a b+7 b c r$	$+7 a d$

Here we first rearrange the expressions so that like terms are in the same vertical columns, and then add up each column separately.

EXAMPLES II. b.

Find the sum of

1. $3 a+2 b-5 c ;-4 a+b-7 c ; 4 a-3 b+6 c$.
2. $3 x+2 y+6 z ; x-3 y-3 z ; 2 x+y-3 z$.
3. $8 l-2 m+5 u$; $-6 l+7 m+4 n ;-l-4 m-8 n$.
4. $5 a-7 b+3 c-4 d ; 6 b-5 c+3 d ; \quad b+2 c-d$.
5. $7 x-5 y-7 z ; 4 x+y ; 5 z ; 5 x-3 y+2 z$.
6. $a-2 b+7 c+3 ; 2 b-3 c+5 ; 3 c+2 a ; a-8-7 c$.
7. $5-x-y ; 7+2 x ; 3 y-2 z ;-4+x-2 y$.
8. $17 a b-13 k l-5 x y$; $7 x y$; $12 k l-5 a b ; 3 x y-4 k l-a b$.
9. $3 a x+c z-4 b y$; $7 b y-8 a x-c z ;-3 b y+9 a x$.
10. $-3 a b+7 c d-5 q r ; 2 r y+8 q r-c d ; 2 c d-3 q r+a b-2 r y$.
11. Each of the letters composing a term is called a dimension of the term, and the number of letters involved is called the degree of the term. Thus the product $a b c$ is said to be of three dimensions, or of the third degree ; and αx^{4} is said to be of five dimensions, or of the fifth degree. A numerical coefficient is not counted. Thus $8 a^{2} b^{5}$ and $a^{2} b^{5}$ are each of seven dimensions.

The degree of an expression is the degree of the term of highest dimensions contained in it ; thus $a^{4}-8 a^{3}+3 a-5$ is an expression of the fourth degree, and 4 is said to be the highest power of a in the expression. Similarly $2 a^{2} x+3 a x^{3}-7 b^{2} x^{3}$ is an expression of the fifth degree.

A compound expression is said to be homogeneous when all its terms are of the same dimensions. Thus $8 a^{6}-a^{4} b^{2}+9 a b^{5}$ is a homogeneous expression of six dimensions.
23. Different powers of the same letter are unlike terms; thus the result of adding together $2 x^{3}$ and $3 x^{2}$ cannot be expressed by a single term, but must be left in the form $2 x^{3}+3 x^{2}$.

Similarly the algebraical sum of $5 a^{2} b^{2},-3 a b^{3}$, and $-b^{4}$ is $5 a^{2} b^{2}-3 a b^{3}-b^{4}$. This expression is in its simplest form and cannot be abridged.

In adding together several algebraical expressions containing terms with different powers of the same letter, it will be found convenient to arrange all expressions in descending or ascending powers of that letter. This will be made clear by the following examples.

Example 1. Add together $3 x^{3}+7+6 x-5 x^{2} ; 2 x^{2}-8-9 x$; $4 x-2 x^{3}+3 x^{2} ; 3 x^{3}-9 x-x^{2} ; x-x^{2}-x^{3}+4$.
$3 x^{3}-5 x^{2}+6 x+7 \quad$ In writing down the first expression $2 x^{2}-9 x-8$
$-2 x^{3}+3 x^{2}+4 x$
$3 x^{3}-x^{2}-9 x$
$\frac{-x^{3}-x^{2}+x+4}{3 x^{3}-2 x^{2}-7 x+3}$ we put in the first term the highest power of x, in the second term the next highest power, and so on till the last term, in which x does not appear. The other expressions are arranged in the same way, so that in each column we have like powers of the same letter.
Example 2. Add together $3 a b^{2}-2 b^{3}+a^{3}$; $5 a^{2} b-a b^{2}-3 a^{3}$; $8 a^{3}+5 b^{3} ; 9 a^{2} b-2 a^{3}+a b^{2}$.

$-2 b^{3}+3 a b^{2} \quad+a^{3}$
$-a b^{2}+5 a^{2} b-3 a^{3}$
$5 b^{3} \quad+8 a^{3}$
$a b^{2}+9 a^{2} b-2 a^{3}$
$3 b^{3}+3 a b^{2}+14 a^{2} b+4 a^{3}$

Here each expression contains powers of two letters, and is arranged according to descending powers of b, and ascending powers of a.

EXAMPLES II. c.

Find the sum of the following expressions:

1. $x^{2}+3 x y-3 y^{2} ;-3 x^{2}+x y+2 y^{2} ; 2 x^{2}-3 x y+y^{2}$.
2. $2 x^{2}-2 x+3 ;-2 x^{2}+5 x+4 ; x^{2}-2 x-6$.
3. $5 x^{3}-x^{2}+x-1 ; 2 x^{2}-2 x+5 ;-5 x^{3}+5 x-4$.
4. $a^{3}-a^{2} b+5 a b^{2}+b^{3} ;-a^{3}-10 a b^{2}+b^{3} ; 2 a^{2} b+5 a b^{2}-b^{3}$.
5. $4 m m^{3}+2 m^{2}-5 m+7 ; 3 m^{3}+6 m^{2}-2 ;-5 m^{2}+3 m ; 2 m-6$.
6. $a x^{3}-4 b x^{2}+c x ; 3 b x^{2}-2 c x-d ; \quad b x^{2}+2 d ; 2 a x^{3}+d$.
7. $p y^{2}-9 q y+7 r ;-2 p y^{2}+3 q y-6 r ; 7 q y-4 r$; $3 p y^{2}$.
8. $2-a+8 a^{2}-\alpha^{3} ; 2 \alpha^{3}-3 \alpha^{2}+2 \alpha-2 ;-3 \alpha+7 \alpha^{3}-5 \alpha^{2}$.
9. $1+2 y-3 y^{2}-5 y^{3} ;-1+2 y^{2}-y ; 5 y^{3}+3 y^{2}+4$.
10. $a^{2} x^{3}-3 a^{3} x^{2}+x ; 5 x+7 a^{3} x^{2} ; 4 a^{3} x^{2}-a^{2} x^{3}-5 x$.
11. $3 x^{3}+2 y^{2}-5 x+2$; $7 x^{3}-5 y^{2}+7 x-5 ; \quad 9 x^{3}+11-8 x+4 y^{2}$; $6 x-y^{2}-18 x^{3}-7$.
12. $x^{2}+2 x y+3 y^{2} ; \quad 3 z^{2}+2 y z+y^{2} ; \quad x^{2}+3 z^{2}+2 x z ; \quad z^{2}-3 x y-3 y z$; $x y+x z+y z-6 z^{2}-4 y^{2}-2 x^{2}$.
13. $-\frac{3}{4} x^{3}+5 a x^{2}-\frac{5}{8} \alpha^{2} x ; x^{3}-\frac{37}{8}-a x^{2}+\frac{1}{2} \alpha^{2} x ;-\frac{1}{2} x^{3}+\frac{3}{4} \alpha^{2} x$.
14. $\frac{3}{8} x^{2}-\frac{5}{3} x y-7 y^{2} ; \frac{2}{3} x y+\frac{18}{5} y^{2} ;-\frac{5}{8} x^{2}+4 y^{2}$.
15. $\frac{1}{2} a^{3}-2 a^{2} b-\frac{3}{2} b^{3} ; \frac{3}{2} a^{2} b-\frac{3}{4} a b^{2}+2 b^{3} ;-\frac{3}{2} a^{3}+a b^{2}+\frac{1}{2} b^{2}$.

CHAPTER III.

Subtraction.

24. The simplest cases of Subtraction have already come under the head of addition of like terms, of which some are negative. [Art. 16.]
Thus

$$
\begin{aligned}
5 \alpha-3 a & =2 a \\
3 a-7 \alpha & =-4 a, \\
-3 a-6 a & =-9 a,
\end{aligned}
$$

Also by the rule for removing brackets [Art. 20],
and

$$
\begin{aligned}
3 \alpha-(-8 \alpha) & =3 \alpha+8 \alpha=11 \alpha \\
-3 \alpha-(-8 \alpha) & =-3 \alpha+8 \alpha=5 \alpha
\end{aligned}
$$

25. In dealing with expressions which contain unlike terms we may proceed as in the following examples.

Example 1. Subtract $3 a-2 b-c$ from $4 a-3 b+5 c$.
The difference
$=4 a-3 b+5 c-(3 a-2 b-c)$
$=4 a-3 b+5 c-3 a+2 b+c$
$=4 a-3 a-3 b+2 b+5 c+c$
$=a-b+6 c$.

The expression to be subtracted is first enclosed in brackets with a minus sign prefixed, then on removal of the brackets the like terms are combined by the rules already explained in Art. 16.

It is, however, more convenient to arrange the work as follows, the signs of all the terms in the lower line being changed.

$4 a-3 b+5 c$	$\begin{array}{c}\text { The like terms are written in } \\ -3 a+2 b+c\end{array}$
the same vertical column, and each	

Rule. Change the sign of every term in the expression to be subtracted, and add to the other expression.

Note. It is not necessary that in the expression to be subtracted the signs should be actually changed; the operation of changing signs ought to be performed mentally.

Example 2. From $5 x^{2}+x y$ take $2 x^{2}+8 x y-7 y^{2}$.
$5 x^{2}+x y$
$\frac{2 x^{2}+8 x y-7 y^{2}}{3 x^{2}-7 x y+7 y^{2}}$

In the first column we combine mentally $5 x^{2}$ and $-2 x^{2}$, the algebraic sum of which is $3 x^{2}$. In the last column the sign of the term $-7 y^{2}$ has to be changed before it is put down in the result.

Terms containing different powers of the same letter being unlike must stand in different columns.

Example 3. Subtract $3 x^{2}-2 x$ from $1-x^{3}$.
$-x^{3}+1 \quad$ In the first and last columns, as there is
$\frac{3 x^{2}-2 x}{-x^{3}-3 x^{2}+2 x+1}$ nothing to be subtracted, the terms are put
and third columns each sign has to be changed.
The re-arrangement of terms in the first line is not necessary, but it is convenient, because it gives the result of subtraction in descending powers of x.

EXAMPLES III.

Subtract

1. $a+2 b-c$ from $2 a+3 b+c$. 2. $2 a-b+c$ from $3 a-5 b-c$.
2. $x+8 y+8 z$ from $10 x-7 y-6 z$.
3. $-m-3 n+p$ from $-2 m+n-3 p$.
4. $3 p-2 q+r$ from $4 p-7 q+3 r$.
5. $3 x-5 y-7 z$ from $2 x+3 y-4 z$.
6. $-2 x-5 y$ from $x+3 y-2 z$.
7. $m-2 n-p$ from $m+2 n$.
8. $3 a b+6 c d-3 a c-5 b d$ from $3 a b+5 c d-4 a c-6 b d$.
9. $-2 p q-3 q r+4 r s$ from $q r-4 r s$.
10. $-m n+11 n p-3 p m$ from $-11 n p$.

From
12. $x^{3}-3 x^{2}+x$ take $-x^{3}+3 x^{2}-x$.
13. $-2 x^{3}-x^{2}$ take $x^{3}-x^{2}-x$. 14. $a^{3}+b^{3}-3 a b c$ take $b^{3}-2 a b c$.
15. $-8+6 b c+b^{2} c^{2}$ take $4-3 b c-5 b^{2} c^{2}$.
16. $p^{3}+r^{3}-3 p q r$ take $r^{3}+q^{3}+3 p q r$.
17. $1-3 x^{2}$ take $x^{3}-3 x^{2}+1$. 18. $x^{3}+11 x^{2}+4$ take $8 x^{2}-5 x-3$.
19. $a^{3}+5-2 a^{2}$ take $8 a^{3}+3 a^{2}--7$.
20. $1-2 x+3 x^{2}$ take $7 x^{3}-4 x^{2}+3 x+1$.
21. $1-x+x^{5}-x^{4}-x^{3}$ take $x^{4}-1+x-x^{2}$.
22. $-8 m n^{2}+15 m^{2} n+n^{3}$ take $m^{3}-n^{3}+8 m n^{2}-7 m^{2} n$.
23. $\frac{3}{8} x^{2}-\frac{2}{3} \alpha x$ take $\frac{1}{3}-\frac{1}{4} x^{2}-\frac{5}{6} \alpha x$.
24. $\frac{3}{4} x^{3}-\frac{1}{3} x y^{2}-y^{2}$ take $\frac{1}{2} x^{2} y-\frac{5}{6} y^{2}-\frac{1}{3} x y^{2}$.
25. $\frac{1}{8} a^{3}-2 a x^{2}-\frac{1}{3} \alpha^{2} x$ take $\frac{1}{3} a^{2} x+\frac{1}{4} a^{3}-\frac{3}{2} a x^{2}$.

CHAPTER IV.

Multiplication.

26. Multiplication in its primary sense signifies repeated addition.

Thus

$$
\begin{aligned}
3 \times 4 & =3 \text { taken } 4 \text { times } \\
& =3+3+3+3 .
\end{aligned}
$$

Here the multiplier contains 4 units, and the number of times we take 3 is the same as the number of units in 4.

Again $a \times b=a$ taken b times

$$
=a+a+a+a+\ldots \text {, the number of terms being } b \text {. }
$$

Also $3 \times 4=4 \times 3$; and so long as a and b denote positive whole numbers it is easy to shew that

$$
a \times b=b \times a \text {. }
$$

27. When the quantities to be multiplied together are not positive whole numbers, we may define multiplication as an operation performed on one quantity which when performed on unity produces the other. For example, to multiply $\frac{{ }_{5}^{5}}{}$ by $\frac{3}{5}$, we perform on $\frac{4}{3}$ that operation which when performed on unity gives $\frac{3}{7}$; that is, we must divide $\frac{4}{5}$ into seven equal parts and take three of them. Now each part will be equal to $\frac{4}{5 \times 7}$, and the result of taking three of such parts is expressed by $\frac{4 \times 3}{5 \times 7}$.

Hence

$$
\begin{aligned}
& \frac{4}{5} \times \frac{3}{7}=\frac{4 \times 3}{5 \times 7} . \\
& \frac{4 \times 3}{5 \times 7}=\frac{3 \times 4}{7 \times 5}=\frac{3}{7} \times \frac{4}{5} . \\
& \therefore \frac{4}{5} \times \frac{3}{7}=\frac{3}{7} \times \frac{4}{5} .
\end{aligned}
$$

Also, by Art. 26,

The reasoning is clearly general, and we may now say that $a \times b=b \times a$, where a and b are any positive quantities, integral or fractional.
In the same way it easily follows that

$$
\begin{aligned}
a b c & =a \times b \times c \\
& =(a \times b) \times c=(b \times a) \times c=b a c \\
& =b \times(a \times c)=b \times c \times a=b c a ;
\end{aligned}
$$

that is, the factors of a product may be taken in any order.
e.c.
28. Since, by definition, $u^{3}=\alpha \alpha \alpha$, and $a^{5}=\alpha \alpha \alpha \alpha \alpha$;

$$
\therefore a^{3} \times \alpha^{5}=\alpha \alpha \alpha \times \alpha \alpha \alpha \alpha a=\alpha \alpha \alpha \alpha \alpha a \alpha a=a^{8}=a^{3+5} ;
$$

that is, the index of α in the product is the sum of the indices of a in the factors of the product.

Again,

$$
5 a^{2}=5 a \alpha, \text { and } 7 a^{3}=7 \alpha a \alpha
$$

$$
\therefore 5 a^{2} \times 7 \alpha^{3}=5 \times 7 \times \alpha \alpha \alpha a \alpha=35 \alpha^{5} .
$$

When the expressions to be multiplied together contain powers of different letters, a similar method is used.

Example. $\quad 5 a^{3} b^{2} \times 8 a^{2} b x^{3}=5 a \alpha a b b \times 8 \dot{a} \alpha b x x x=40 a^{5} b^{3} x^{3}$.
Note. The beginner must be careful to observe that in this process of multiplication the indices of one letter cannot combine in any way with those of another. Thus the expression $40 a^{5} b^{3} x^{3}$ admits of no further simplification.
29. Rule. To multiply two simple expressions together, multiply the coefficients together and prefix their product to the product of the different letters, giving to each letter an index equal to the sum of the indices that letter has in the separate factors.

The rule may be extended to cases where more than two expressions are to be multiplied together.

Example 1. Find the product of x^{2}, x^{3}, and x^{8}.
The product $=x^{2} \times x^{3} \times x^{8}=x^{2+3} \times x^{8}=x^{2+3+8}=x^{13}$.
The product of three or more expressions is called the continued product.

Example 2. Find the continned product of $5 x^{2} y^{3}, 8 y^{2} z^{5}$, and $3 x z^{4}$. The product $=5 x^{2} y^{3} \times 8 y^{2} z^{5} \times 3 x z^{4}=120 x^{3} y^{5} z^{9}$.
30. By definition, $(a+b) m=(a+b)$ taken m times

$$
=(a+a+a+\ldots \text { taken } m \text { times })
$$

together with

$$
(b+b+b+\ldots \text { taken } m \text { times }),
$$

$=a m+b m$.
Also

$$
(a-b) m=(a-b) \text { taken } m \text { times }
$$

$$
=(a+a+a+\ldots \text { taken } m \text { times })
$$

$$
(b+b+b+\ldots \text { taken } m \text { times })
$$

$$
=a m-b m .
$$

Similarly

$$
(a-b+c) m=a m-b m+c m .
$$

Thus it appears that the product of a compound expression by a single factor is the algebraic sum of the partial products of each term of the compound expression by that factor.

Examples. $\quad 3(2 a+3 b-4 c)=6 a+9 b-12 c$.

$$
\left(4 x^{2}-7 y-8 z^{3}\right) \times 3 x y^{2}=12 x^{3} y^{2}--21 x y^{3}-24 x y^{2} z^{3}
$$

EXAMPLES IV. a.

Find the value of

1. $5 x \times 7$.
2. $3 \times 2 b$.
3. $x^{2} \times x^{3}$.
4. $5 x \times 6 x^{2}$.
5. $6 c^{3} \times 7 c^{4}$.
6. $9 y^{2} \times 5 y^{5}$.
7. $3 m^{3} \times 5 m^{5}$.
8. $4 a^{6} \times 6 \alpha^{4}$.
9. $6 a x \times 5 a x$.
10. $3 q r \times 4 q r$.
11. $a^{3} x \times \alpha^{4} x^{3}$.
12. $3 x^{3} y^{2} \times 4 y^{5}$.
13. $a^{2} \times a^{3} b \times 5 a b^{4}$.
14. $6 x^{3} y \times x y \times 9 x^{4} y^{2}$.
15. $7 a^{2} \times 3 b^{3} \times 5 c^{4}$.
16. $3 a b c d \times 5 b c \alpha^{2} \times 4 c a b d$.

Multiply
17. $a b-a c$ by $a^{2} c$.
18. $x^{2} y-x^{3} z+4 y z^{5}$ by $x^{3} y z^{2}$.
19. $5 \alpha^{2}-3 b^{2}$ by $3 a b^{2} c^{4}$.
20. $a^{2} b-5 a b+6 \alpha$ by $3 a^{3} b$.
21. $x y^{2}-3 x^{2} z-2$ by $3 y z$.
22. $a^{3}-3 a^{2} x$ by $2 \alpha^{2} b x$.
31. Since $(a-b) m=a m-b m$,
[Art, 30.]
by putting $c-d$ in the place of m, we have

$$
\begin{aligned}
(a-b)(c-d) & =a(c-d)-b(c-d) \\
& =(c-d) a-(c-d) b \\
& =(a c-a d)-(b c-b d) \\
& =a c-a d-b c+b d .
\end{aligned}
$$

If we consider each term on the right-hand side of this result, and the way in which it arises, we find that

$$
\begin{aligned}
& (+a) \times(+c)=+a c . \\
& (-b) \times(-d)=+b d . \\
& (-b) \times(+c)=-b c . \\
& (+a) \times(-d)=-a d .
\end{aligned}
$$

These results enable us to state what is known as the Rule of Signs in multiplication.

Rule of Signs. The product of two terms with like signs is positive; the product of two terms with unlike signs is negative.

Example 1. Multiply $4 a$ by $-3 b$.
By the rule of signs the product is negative ; also $4 a \times 3 b=12 a b$;

$$
\therefore 4 a \times(-3 b)=-12 a b .
$$

Example 2. Multiply $-5 a b^{3} x$ by $-a b^{3} x$.
Here the absolute value of the product is $5 a^{2} b^{6} x^{2}$, and by the rule of signs the product is positive ;

$$
\therefore\left(-5 a b^{3} x\right) \times\left(-a b^{3} x\right)=5 a^{2} b^{6} x^{2}
$$

Example 3. Find the continued product of $3 a^{2} b,-2 a^{3} b^{2},-a b^{4}$.
$3 a^{2} b \times\left(-2 a^{3} b^{2}\right)=-6 a^{5} b^{3}$; $\left(-6 a^{5} b^{3}\right) \times\left(-a b^{4}\right)=+6 a^{6} b^{7}$.

Thus the complete product is $6 a^{6} b^{7}$.

This result, however, may be written down at once : for

$$
3 a^{2} b \times 2 a^{3} b^{2} \times a b^{4}=6 a^{6} b^{7}
$$

and by the rule of signs the required product is positive.

Example 4. Multiply $6 a^{3}-\frac{5}{3} a^{2} b-\frac{4}{5} a b^{2}$ by $-\frac{3}{4} a b^{2}$.
The product is the algebraical sum of the partial products formed according to the rule enunciated in Art. 30 ; thus

$$
\left(6 a^{3}-\frac{5}{3} a^{2} b-\frac{4}{5} a b^{2}\right) \times\left(-\frac{3}{4} a b^{2}\right)=-\frac{9}{2} a^{4} b^{2}+\frac{5}{4} a^{3} b^{3}+\frac{3}{5} a^{2} b^{4} .
$$

EXAMPLES IV. b.

Multiply together

1. $a,-2$.
2. $-3,4 x$.
3. $-x^{2},-x^{3}$. 4. $-5 m, 3 m^{3}$.
4. $-4 q, 3 q^{2}$.
5. $-4 y^{3},-4 y^{3}$.
6. $-3 m^{3}, 3 m^{3}$. 8. $4 x^{4},-4 x^{4}$.
7. $-3 a b,-4 a c, 3 b c$. 10. $-2 a^{3},-3 a^{2} b,-6$. 11. $-2 p,-3 q, 4 s,-t$.

Find the product of
12. $2 a-3 b+4 c$ and $-\frac{3}{2} a$.
13. $3 x-2 y-4$ and $-\frac{5}{6} x$.
14. $\frac{2}{3} a-\frac{1}{6} b-c$ and $-\frac{3}{8} a x$.
15. $\frac{6}{7} a^{2} x^{2}-\frac{3}{2} a x^{3}$ and $-\frac{7}{3} a^{3} x$.
16. $-\frac{5}{3} a^{2} x^{2}$ and $-\frac{3}{2} a^{2}+a x-\frac{3}{5} x^{2}$. 17. $-\frac{7}{2} x y$ and $3 x^{2}+\frac{2}{7} x y$.
32. To find the product of $\mathrm{a}+\mathrm{b}$ and $\mathrm{c}+\mathrm{d}$.

From Art. 30, $\quad(a+b) m=a m+b m$;
replacing m by $c+d$, we have

$$
\begin{aligned}
(a+b)(c+d) & =a(c+d)+b(c+d) \\
& =(c+d) a+(c+d) b \\
& =a c+a d+b c+b d .
\end{aligned}
$$

Similarly it may be shewn that

$$
\begin{aligned}
& (a-b)(c+d)=a c+a d-b c-b d \\
& (a+b)(c-d)=a c-a d+b c-b d \\
& (a-b)(c-d)=a c-a d-b c+b d
\end{aligned}
$$

33. When one or both of the expressions to be multiplied together contain more than two terms a similar method may be used. For instance

$$
(a-b+c) m=a m-b m+c m ;
$$

replacing m by $x-y$, we have

$$
\begin{aligned}
(\alpha-b+c)(x-y) & =a(x-y)-b(x-y)+c(x-y) \\
& =(a x-a y)-(b x-b y)+(c x-c y) \\
& =a x-a y-b x+b y+c x-c y
\end{aligned}
$$

34. The preceding results enable us to state the general rule for multiplying together any two compound expressions.

Rule. Multiply each term of the first expression by each term of the second. When the terms multiplied together have like signs, prefix to the product the sign + , when unlike prefix - ; the algebraical sum of the partial products so formed gives the complete product.

Example 1. Multiply $x+8$ by $x+7$.
The product

$$
\begin{aligned}
& =(x+8)(x+7) \\
& =x^{2}+8 x+7 x+56 \\
& =x^{2}+15 x+56 .
\end{aligned}
$$

The operation is more conveniently arranged as follows:

$$
\begin{aligned}
& x+8 \\
& \frac{x+7}{x^{2}+8 x} \\
& +7 x+56 \\
& \hline x^{2}+15 x+56
\end{aligned}
$$

We begin on the left and work to the right, placing the second result one place to the right, so that like terms may stand in the same vertical column.

Example 2. Multiply $2 x-3 y$ by $4 x-7 y$.
by addition,

$$
\begin{aligned}
& 2 x-3 y \\
& \frac{4 x-7 y}{8 x^{2}-12 x y} \\
& \frac{-14 x y+21 y^{2}}{8 x^{2}-26 x y+21 y^{2}} .
\end{aligned}
$$

EXAMPLES IV. c.
Find the product of

1. $a+7, a+5$.
2. $x-3, x+4$.
3. $a-6, a-7$.
4. $y-4, y+4$.
5. $x+9, x-8$.
6. $c-8, c+8$.
7. $p-10, p+10$.
8. $d+7, d+7$.
9. $x-4,-x+4$.
10. $-y+3,-y-3$.
11. $-a+4,-a+5$.
12. $-y-7,-y-7$.
13. $2 \alpha-5,3 \alpha+2$.
14. $x-7,2 x+5$.
15. $3 x-4,2 x+3$.
16. $x-3 a, 2 x+3 a$.
17. $3 a-2 b, 2 a+3 b$.
18. $5 c+4 d, 5 c-4 d$.
19. $3 x-5 y, 4 x+y$.
20. $2 y-3 z, 2 y+3 z$.
21. $x y+2 b, x y-2 b$.
22. We shall now give a few examples of greater difficulty.

Example 1. Find the product of $3 x^{2}-2 x-5$ and $2 x-5$.
$3 x^{2}-2 x-5$ Each term of the first expression is
$\frac{2 x-5}{6 x^{3}-4 x^{2}-10 x}$
$\frac{-15 x^{2}+10 x+25}{6 x^{3}-19 x^{2}+25}$. multiplied by $2 x$, the first term of the second expression; then each term of the first expression is multiplied by -5 ; like terms are placed in the same columns and the results added.

Example 2. Multiply $a-b+3 c$ by $a+2 b$.

$$
\begin{aligned}
& a-b+3 c \\
& \frac{a+2 b}{a^{2}-a b+3 a c} \\
& \frac{2 a b-2 b^{2}+6 b c}{a^{2}+a b+3 a c-2 b^{2}+6 b c}
\end{aligned}
$$

36. If the expressions are not arranged according to powers, ascending or descending, of some common letter, a re-arrangement will be found convenient.

Example. Find the product of $2 a^{2}+4 b^{2}-3 a b$ and $3 a b-5 a^{2}+4 b^{2}$.

$$
\begin{aligned}
& \quad 2 a^{2}-3 a b+4 b^{2} \\
& -5 a^{2}+3 a b+4 b^{2} \\
& \hline-10 a^{4}+15 a^{3} b-20 a^{2} b^{2} \\
& \quad+6 a^{3} b-9 a^{2} b^{2}+12 a b^{3} \\
& 8 a^{2} b^{2}-12 a b^{3}+16 b^{4} \\
& \hline-10 a^{4}+21 a^{3} b-21 a^{2} b^{2}+16 b^{4} .
\end{aligned}
$$

The re-arrangement is not necessary, but convenient, because it makes the collection of like terms more easy.
37. When the coefficients are fractional we use the ordinary process of Multiplication, combining the fractional coefficients by the rules of Arithmetic.

Example. Multiply $\frac{1}{3} a^{2}-\frac{1}{2} a b+\frac{2}{3} b^{2}$ by $\frac{1}{2} a+\frac{1}{3} b$.

$$
\begin{aligned}
& \frac{1}{3} a^{2}-\frac{1}{2} a b+\frac{2}{3} b^{2} \\
& \frac{1}{2} a+\frac{1}{3} b \\
& \frac{1}{6} a^{3}-\frac{1}{4} a^{2} b+\frac{1}{3} a b^{2} \\
& \quad+\frac{1}{9} a^{2} b-\frac{1}{6} a b^{2}+\frac{2}{9} b^{3} \\
& \frac{1}{6} a^{3}-\frac{5}{36} a^{2} b+\frac{1}{6} a b^{2}+\frac{2}{9} b^{3}
\end{aligned}
$$

EXAMPLES IV. d.

Multiply

1. $x^{2}-3 x-2$ by $2 x-1$.
2. $4 \alpha^{2}-a-2$ by $2 a+3$.
3. $2 y^{2}-3 y+1$ by $3 y-1$.
4. $3 x^{2}+4 x+5$ by $4 x-5$.
5. $3 x^{2}-2 x+7$ by $2 x-7$.
6. $5 c^{2}-4 c+3$ by $-2 c+1$.
7. $2 a^{2}-3 a-6$ by $a^{2}-a+2$.
8. $2 k^{2}-3 k-1$ by $3 k^{2}-k-1$.
9. $x^{2}-x y+y^{2}$ by $x^{2}+x y+y^{2}$.
10. $a^{2}-2 a x+2 x^{2}$ by $a^{2}+2 a x+2 x^{2}$.
11. $x^{3}-3 x^{2}-x$ by $x^{2}-3 x+1$.
12. $a^{3}-6 a+5$ by $a^{3}+6 a-5$.
13. $2 y^{4}-4 y^{2}+1$ by $2 y^{4}-4 y^{2}-1$.
14. $2 x+2 x^{3}-3 x^{2}$ by $3 x+2+2 x^{2}$.
15. $a^{3}+b^{3}-a^{2} b^{2}$ by $a^{2} b^{2}-a^{3}+b^{3}$.
16. $a^{3}+x^{3}+3 a x^{2}+3 a^{2} x$ by $a^{3}+3 a x^{2}-x^{3}-3 a^{2} x$.
17. $a^{4}+1+6 a^{2}-4 \alpha^{3}-4 a$ by $a^{3}-1+3 a-3 a^{2}$.
18. $x^{4}+6 x^{2} y^{2}+y^{4}-4 x^{3} y-4 x y^{3}$ by $-x^{4}-y^{4}-6 x^{2} y^{2}-4 x y^{3}-4 x^{3} y$.
19. $\frac{2}{3} x^{2}+x y+\frac{3}{2} y^{2}$ by $\frac{1}{3} x-\frac{1}{2} y$.
20. $\frac{3}{2} x^{2}-a x-\frac{2}{3} \alpha^{2}$ by $\frac{3}{4} x^{2}-\frac{1}{2} \alpha x+\frac{1}{3} \alpha^{2}$.
21. $\frac{1}{2} x^{2}-\frac{2}{3} x-\frac{3}{4}$ by $\frac{1}{2} x^{2}+\frac{2}{3} x-\frac{3}{4}$.
22. $\frac{2}{3} a x+\frac{2}{3} x^{2}+\frac{1}{3} a^{2}$ by $\frac{3}{4} a^{2}+\frac{3}{2} x^{2}-\frac{3}{2} a x$.

CHAPTER V.

Division.

38. When a quantity a is divided by the quantity b, the quotient is defined to be that which when multiplied by b produces a. This operation of division is denoted by $a \div b, \frac{a}{b}$, or a / b; in each of these modes of expression a is called the dividend, and b the divisor.

Division is thus the inverse of multiplication, and

$$
(a \div b) \times b=a
$$

This statement may also be expressed verbally as follows :

$$
\begin{aligned}
& \text { quotient } \times \text { divisor }=\text { dividend, }, \\
& \frac{\text { dividend }}{\text { divisor }}=\text { quotient. } .
\end{aligned}
$$

Example 1. Since the product of 4 and x is $4 x$, it follows that when $4 x$ is divided by x the quotient is 4 , or otherwise,

$$
4 x \div x=4
$$

Example 2. Divide $27 a^{5}$ by $9 a^{3}$. $\begin{aligned} \text { The quotient } & =\frac{27 a^{5}}{9 a^{3}}=\frac{27 a a \alpha a \alpha}{9} \text { aaa } \\ & =3 a a=3 a^{2}\end{aligned} \left\lvert\, \begin{aligned} & \begin{array}{r}\text { We remove from the divisor } \\ \text { and dividend the factors com- } \\ \text { mon to both, just as in arith- } \\ \text { metic. }\end{array}\end{aligned}\right.$

Therefore

$$
27 a^{5} \div 9 a^{3}=3 a^{2}
$$

Example 3. Divide $35 a^{3} b^{2} c^{3}$ by $7 a b^{2} c^{2}$.

$$
\text { The quotient }=\frac{35 a a a \cdot b b \cdot c c c}{7 a \cdot b b \cdot c c}=5 a a \cdot c=5 a^{2} c \text {. }
$$

In each of these cases it should be noticed that the index of any letter in the quotient is the difference of the indices of that letter in the dividend and divisor.
39. It is easy to prove that the rule of signs holds for division.

Thus

$$
\begin{aligned}
a b \div a & =\frac{a b}{a}=\frac{a \times b}{a}=b . \\
-a b \div a & =\frac{-a b}{a}=\frac{a \times(-b)}{a}=-b .
\end{aligned}
$$

$$
\begin{aligned}
a b \div(-a) & =\frac{a b}{-a}=\frac{(-a) \times(-b)}{-a}=-b . \\
-a b \div(-a) & =\frac{-a b}{-a}=\frac{(-a) \times b}{-a}=b .
\end{aligned}
$$

Hence in division as well as multiplication
like signs produce + , unlike signs produce - .
Rule. To divide one simple expression by another :
The index of each letter in the quotient is obtained by subtracting its index in the divisor from its index in the dividend.

To the result so obtained prefix with its proper sign the quotient of the coefficient of the dividend by that of the divisor:

Example 1. Divide $84 a^{5} x^{3}$ by $-12 a^{4} x$.

The quotient $=(-7) \times a^{5-4} x^{3-1}$ $=-7 \alpha x^{2}$

Or at once mentally, $84 \alpha^{5} x^{3} \div\left(-12 \alpha^{4} x\right)=-7 a x^{2}$.

Example 2. $\quad-45 a^{6} b^{2} x^{4} \div\left(-9 a^{3} b x^{2}\right)=5 a^{3} b x^{2}$.
Rule. To divide a compound expression by a single factor, divide each term separately by that factor, and take the algebraic sum of the partial quotients so obtained.

This follows at once from Art. 30.
Examples. $\quad(9 x-12 y+3 z) \div(-3)=-3 x+4 y-z$. $\left(36 a^{3} b^{2}-24 a^{2} b^{5}-20 a^{4} b^{2}\right) \div 4 a^{2} b=9 a b-6 b^{4}-5 a^{2} b$. $\left(2 x^{2}-5 x y+\frac{3}{2} x^{2} y^{3}\right) \div-\frac{1}{2} x=-4 x+10 y-3 x y^{3}$.

EXAMPLES V. a.

Divide

1. $2 x^{3}$ by x^{2}.
2. $6 a^{5}$ by $3 a$.
3. $5 a^{7}$ by a^{4}.
4. $21 b^{7}$ by $7 b^{3}$.
5. $4 p^{2} q^{3}$ by $-2 p q$.
6. $-l^{3} m^{2}$ by $-l m$.
7. $-48 x^{9}$ by $-6 x^{3}$.
8. $35 z^{11}$ by $-7 z^{5}$.
9. $-7 a^{3} b$ by $-7 b$.
10. $-45 a^{4} b^{3} c^{15}$ by $9 a^{2} b^{3} c^{10}$.
11. $-x^{3} y^{4} z^{5}$ by $-x^{3} y z^{5}$.
12. $3 x^{2}-2 x$ by x.
13. $5 a^{3} b-7 a b^{3}$ by $a b$.
14. $x^{2}-x y-x z$ by $-x$.
15. $10 \alpha^{3}-5 a^{2} b+a$ by $-a$.
16. $4 x^{3}+36 a x^{2}-16 x$ by $-4 x$.
17. $3 a^{3}-9 a^{2} b-6 a b^{2}$ by $-3 a$.
18. $-3 a^{2}+\frac{9}{2} a b-6 a c$ by $-\frac{3}{2} a$.
19. $\frac{1}{2} x^{5} y^{2}-3 x^{3} y^{4}$ by $-\frac{3}{2} x^{3} y^{2}$.
20. $-\frac{5}{2} x^{2}+\frac{5}{3} x y+\frac{10}{3} x$ by $-\frac{5}{6} x$.
21. $-2 a^{5} x^{3}+\frac{7}{2} a^{4} x^{4}$ by $\frac{7}{3} a^{3} x$.
22. To divide one compound expression by another.

Rule. 1. Arrange divisor and dividend in ascending or descending powers of some common letter.
2. Divide the term on the left of the dividend by the term on the left of the divisor, and put the result in the quotient.
3. Multiply the whole divisor by this quotient, and put the product under the dividend.
4. Subtract and bring down from the dividend as many terms as may be necessary.

Repeat these operations till all the terms from the dividend are brought down.

Example 1. Divide $x^{2}+11 x+30$ by $x+6$.
Arrange the work thus: $x+6) x^{2}+11 x+30($
divide x^{2}, the first term of the dividend, by x, the first term of the divisor ; the quotient is x. Multiply the whole divisor by x, and put the product $x^{2}+6 x$ under the dividend. We then have
by subtraction,

$$
\begin{gathered}
x+6) \\
\frac{x^{2}+11 x+30(x}{x^{2}+6 x} \\
5 x+30
\end{gathered}
$$

On repeating the process above explained, we find that the next term in the quotient is +5 .

The entire operation is more compactly written as follows :

$$
\begin{gathered}
x+6) \begin{array}{c}
x^{2}+11 x+30(x+5 \\
x^{2}+6 x
\end{array} \\
\begin{array}{c}
5 x+30 \\
5 x+30
\end{array}
\end{gathered}
$$

Example 2. Divide $16 a^{3}-46 a^{2}+\overline{39 a-9}$ by $8 a-3$.

$$
\begin{gathered}
8 a-3) \frac{16 a^{3}-46 a^{2}+39 a-9\left(2 a^{2}-5 a+3\right.}{16 a^{3}-6 a^{2}} \\
-40 a^{2}+39 a \\
\frac{-40 a^{2}+15 a}{24 a-9} \\
\underline{24 a-9}
\end{gathered}
$$

Thus the quotient is $2 a^{2}-5 a+3$.

Divide

EXAMPLES V. b.

1. $a^{2}+2 a+1$ by $a+1$.
2. $b^{2}+3 b+2$ by $b+2$.
3. $x^{2}+5 x-6$ by $x-1$.
4. $x^{2}+2 x-8$ by $x-2$.
5. $m^{2}+7 m-78$ by $m-6$.
6. $x^{2}+a x-30 a^{2}$. by $x+6 a$.
7. $a^{2}+9 a b-36 b^{2}$ by $a+12 b$.
8. $-x^{2}+18 x-45$ by $x-15$.
9. $2 x^{2}-13 x-24$ by $2 x+3$. 10. $12 a^{2}+a x-6 x^{2}$ by $3 a-2 x$.
10. $-5 x^{2}+x y+6 y^{2}$ by $-x-y$. 12. $6 a^{2}-a c-35 c^{2}$ by $2 a-5 c$.
11. $4 m^{2}-49 n^{2}$ by $2 m+7 n$.
12. $-25 x^{2}+49 y^{2}$ by $-5 x+7 y$.
13. $-2 x^{3}+13 x^{2}-17 x+10$ by $-x+5$.
14. $6 x^{3} y-x^{2} y^{2}-7 x y^{3}+12 y^{4}$ by $2 x+3 y$.
15. The process of Art. 40 is applicable to cases in which the divisor consists of more than two terms.

Example 1. Divide $a^{4}-2 a^{3}-7 a^{2}+8 a+12$ by $a^{2}-a-6$.

$$
\begin{gathered}
\left.a^{2}-a-6\right) \\
\begin{array}{c}
a^{4}-2 a^{3}-7 a^{2}+8 a+12\left(a^{2}-a-2\right. \\
\frac{a^{4}-a^{3}-6 \alpha^{2}}{-a^{3}-a^{2}+8 a} \\
-a^{3}+a^{2}+6 a \\
-2 a^{2}+2 a+12 \\
-2 a^{2}+2 a+12
\end{array}
\end{gathered}
$$

Example 2. Divide $4 x^{3}-5 x^{2}+6 x^{5}-15-x^{4}-x$ by $3+2 x^{2}-x$. First arrange each of the expressions in descending powers of x.

$$
\begin{gathered}
\left.2 x^{2}-x+3\right) 6 x^{5}-x^{4}+4 x^{3}-5 x^{2}-x-15\left(3 x^{3}+x^{2}-2 x-5\right. \\
\frac{6 x^{5}-3 x^{4}+9 x^{3}}{2 x^{4}-5 x^{3}-5 x^{2}} \\
\frac{2 x^{4}-x^{3}+3 x^{2}}{-4 x^{3}-8 x^{2}-x} \\
\frac{-4 x^{3}+2 x^{2}-6 x}{-10 x^{2}+5 x-15} \\
-10 x^{2}+5 x-15
\end{gathered}
$$

Example 3. Divide $a^{3}+b^{3}+c^{3}-3 a b c$ by $a+b+c$.

$$
\begin{array}{r}
a+b+c) \frac{a^{3}-3 a b c+b^{3}+c^{3}\left(a^{2}-a b-a c+b^{2}-b c+c^{2}\right.}{\frac{a^{3}+a^{2} b+a^{2} c}{-a^{2} b-a^{2} c-3 a b c}} \begin{array}{r}
-a^{2} b-a b^{2}-a b c \\
\frac{-a^{2} c+a b^{2}}{}-2 a b c \\
\frac{-a^{2} c}{}-a b c-a c^{2} \\
\frac{a b^{2}-a b c+a c^{2}+b^{3}}{}+\frac{a b^{2}+b^{2} c}{-a b c+a c^{2}-b^{2} c} \\
-\frac{-a b c}{-b^{2} c-b c^{2}} \\
a c^{2}+b c^{2}+c^{3} \\
a c^{2}+b c^{2}+c^{3}
\end{array}
\end{array}
$$

Note. Sometimes it will be found more convenient to arrange the expressions in ascending powers of a common letter.
42. When the coefficients are fractional the ordinary process may still be employed.

Example. Divide $\frac{1}{4} x^{3}+\frac{1}{72} x y^{2}+\frac{1}{12} y^{3}$ by $\frac{1}{2} x+\frac{1}{3} y$.

$$
\begin{aligned}
& \left.\frac{1}{2} x+\frac{1}{3} y\right) \frac{1}{4} x^{3}+\frac{1}{82} x y^{2}+\frac{1}{12} y^{3}\left(\frac{1}{2} x^{2}-\frac{1}{3} x y+\frac{1}{4} y^{2}\right. \\
& \frac{\frac{1}{4} x^{3}+\frac{1}{6} x^{2} y}{-\frac{1}{6} x^{2} y+\frac{1}{72} x y^{2}} \\
& \frac{-\frac{1}{6} x^{2} y-\frac{1}{9} x y^{2}}{\frac{1}{8} x y^{2}+\frac{1}{12} y^{3}} \\
& \frac{1}{8} x y^{2}+\frac{1}{12} y^{3}
\end{aligned}
$$

In the examples given hitherto the divisor has been exactly contained in the dividend. When the division is not exact the work should be carried on until the remainder is of lower dimensions [Art. 22] than the divisor.

EXAMPLES V. c.

Divide

1. $a^{3}-6 a^{2}+11 a-6$ by $a^{2}-4 a+3$.
2. $y^{3}+y^{2}-9 y+12$ by $y^{2}-3 y+3$.
3. $6 a^{3}-5 a^{2}-9 a-2$ by $2 a^{2}-3 a-1$.
4. $12 x^{3}-8 a x^{2}-27 a^{2} x+18 a^{3}$ by $6 x^{2}-13 a x+6 \alpha^{2}$.
5. $16 x^{3}+14 x^{2} y-129 x y^{2}-15 y^{3}$ by $8 x^{2}+27 x y+3 y^{2}$.
6. $3 x^{4}-10 x^{3}+12 x^{2}-11 x+6$ by $3 x^{2}-x+3$.
7. $x^{3}-x^{2}-8 x-13$ by $x^{2}+3 x+3$.
8. $21 m^{3}-27 m-26 m^{2}+20$ by $3 m+7 m^{2}-4$.
9. $3 y^{4}-4 y^{3}+10 y^{2}+3 y-2$ by $y^{3}-y^{2}+3 y+2$.
10. $28 x^{4}+69 x+2-71 x^{3}-35 x^{2}$ by $4 x^{2}+6-13 x$.
11. $x^{3}-8 a^{3}$ by $x^{2}+2 a x+4 a^{2}$.
12. $y^{4}+9 y^{2}+81$ by $y^{2}-3 y+9$.
13. $x^{4}+4 y^{4}$ by $x^{2}+2 x y+2 y^{2}$.
14. $9 \alpha^{4}-4 \alpha^{2}+4$ by $3 a^{2}-4 \alpha+2$.
15. $a^{8}+64$ by $a^{4}-4 a^{2}+8$.
16. $4 m^{5}-29 m-36+8 m^{2}-7 m^{3}+6 m^{4}$ by $m^{3}-2 m^{2}+3 m-4$.
17. $15 x^{4}+22-32 x^{3}-30 x+50 x^{2}$ by $3-4 x+5 x^{2}$.
18. $a^{3} b^{3}+a b-9-b^{4}+3 b^{3}+3 b-a^{4}-3 a^{3}-3 a$ by $3-b+\alpha^{3}$.
19. $x^{8}+1$ by $x^{3}+x^{2}+x+1$ 20. $2 a^{6}+2$ by $a^{3}+2 a^{2}+2 a+1$.
20. $a^{3}+3 a^{2} b+b^{3}-1+3 a b^{2}$ by $a+b-1$.
21. $1-a^{3}-8 x^{3}-6 a x$ by $1-a-2 x$.
22. $\frac{1}{8} a^{3}-\frac{9}{4} a^{2} x+\frac{27}{2} a x^{2}-27 x^{3}$ by $\frac{1}{2} a-3 x$.
23. $36 x^{2}+\frac{1}{9} y^{2}+\frac{1}{4}-4 x y-6 x+\frac{1}{3} y$ by $6 x-\frac{1}{3} y-\frac{1}{2}$.
24. $\frac{8}{27} a^{5}-\frac{2}{6} \frac{4}{1} \frac{3}{2} \alpha x^{4}$ by $\frac{2}{3} a-\frac{3}{4} x$.
25. The following examples in division may be easily verified; they are of great importance and should be carefully noticed.

$$
\text { I. }\left\{\begin{array}{l}
\frac{x^{2}-y^{2}}{x-y}=x+y, \\
\frac{x^{3}-y^{3}}{x-y}=x^{2}+x y+y^{2}, \\
\frac{x^{4}-y^{4}}{x-y}=x^{3}+x^{2} y+x y^{2}+y^{3} .
\end{array}\right.
$$

and so on ; the divisor being $x-y$, the terms in the quotient all positive, and the index in the dividend either odd or even.

$$
\text { II. }\left\{\begin{array}{l}
\frac{x^{3}+y^{3}}{x+y}=x^{2}-x y+y^{2} \\
\frac{x^{5}+y^{5}}{x+y}=x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4} \\
\frac{x^{7}+y^{7}}{x+y}=x^{6}-x^{5} y+x^{4} y^{2}-x^{3} y^{3}+x^{2} y^{4}-x y^{5}+y^{6}
\end{array}\right.
$$

and so on ; the divisor being $x+y$, the terms in the quotient alternately positive and negative, and the index in the dividend always odd.

$$
\text { III. }\left\{\begin{array}{l}
\frac{x^{2}-y^{2}}{x+y}=x-y \\
\frac{x^{4}-y^{4}}{x+y}=x^{3}-x^{2} y+x y^{2}-y^{3} \\
\frac{x^{6}-y^{6}}{x+y}=x^{5}-x^{4} y+x^{3} y^{2}-x^{2} y^{3}+x y^{4}-y^{5}
\end{array}\right.
$$

and so on ; the divisor being $x+y$, the terms in the quotient alternately positive and negative, and the index in the dividend always even.
IV. The expressions $x^{2}+y^{2}, x^{4}+y^{4}, x^{6}+y^{6}, \ldots$ (where the index is even, and the terms both positive) are never exactly divisible by $x+y$ or by $x-y$.

All these different cases may be more concisely stated as follows:
(1) $x^{n}-y^{n}$ is divisible by $x-y$ if n be any whole number.
(2) $x^{n}+y^{n}$ is divisible by $x+y$ if n be any odd whole number.
(3) $x^{n}-y^{n}$ is divisible by $x+y$ if n be any even whole number.
(4) $x^{n}+y^{n}$ is never divisible by $x+y$ or by $x-y$, when n is an even whole number.

CHAPTER VI.

Removal and Insertion of Brackets.

44. Quantities are sometimes enclosed within brackets to indicate that they must all be operated upon in the same way. Thus in the expression $2 a-3 b-(4 a-2 b)$ the brackets indicate that the expression $4 a-2 b$ treated as a whole has to be subtracted from $2 a-3 b$.

In removing brackets we apply the rules given in Art. 20.
Example. Simplify, by removing brackets, the expression

$$
(2 a-3 b)-(3 a+4 b)-(b-2 a) .
$$

The expression $=2 a-3 b-3 a-4 b-b+2 a$
$=a-8 b$, by collecting like terms.
Sometimes it is convenient to enclose within brackets part of an expression already enclosed within brackets. For this purpose it is usual to employ brackets of different forms. The brackets in common use are (), \{ \}, []. When there are two or more pairs of brackets to be removed, it is generally best to begin with the innermost pair. In dealing with each pair in succession we apply the rules quoted above.

Example. Simplify, by removing brackets, the expression

$$
a-2 b-[4 a-6 b-\{3 a-c+(2 a-4 b+c)\}] .
$$

Removing the brackets one by one,

$$
\begin{aligned}
\text { the expression } & =a-2 b-[4 a-6 b-\{3 a-c+2 a-4 b+c\}] \\
& =a-2 b-[4 a-6 b-3 a+c-2 a+4 b-c] \\
& =a-2 b-4 a+6 b+3 a-c+2 a-4 b+c \\
& =2 a, \quad \text { by collecting like terms. }
\end{aligned}
$$

EXAMPLES VI, a.

Simplify by removing brackets and collecting like terms :

1. $(x-3 y)+(2 x-4 y)-(x-8 y)$. 2. $(x-3 y+2 z)-(z-4 y+2 x)$.
2. $2 a+(b-3 a)-(4 a-8 b)-(6 b-5 a)$.
3. $m-(n-p)-(2 m-2 p+3 n)-(n \quad m+2 p)$.
4. $5 x-(7 y+3 x)-(2 y+7 x)-(3 x+8 y)$.
5. $\left(m^{2}-2 n^{2}\right)-\left(2 n^{2}-3 m^{2}\right)-\left(3 m^{2}-4 n^{2}\right)$.
6. $(a+3 b)-(b-3 a)-\{a+2 b-(2 a-b)\}$.
7. $p^{2}-2 q^{2}-\left(q^{2}+2 p^{2}\right)-\left\{p^{2}+3 q^{2}-\left(2 p^{2}-q^{2}\right)\right\}$.
8. $x-[y+\{x-(y-x)\}]$. 10. $(a-b)-\{a-b-(a+b)-(a-b)\}$.
9. $3 x-y-[x-(2 y-z)-\{2 x-(y-z)\}]$.
10. $[3 a-\{2 a-(a-b)\}]-[4 a-\{3 a-(2 a-b)\}]$.
11. A coefficient placed before any bracket indicates that every term of the expression within the bracket is to be multiplied by that coefficient; but when there are two or more brackets to be considered, a prefixed coefficient must be used as a multiplier only when its own bracket is being removed.

Example 1. $2 x+3(x-4)=2 x+3 x-12=5 x-12$.
Example 2. $7 x-2(x-4)=7 x-2 x+8=5 x+8$.
Example 3. Simplify $5 a-4[10 a+3\{x-a-2(a+x)\}]$.
The expression
$=5 a-4[10 a+3\{x-a-2 a-2 x\}]$
$=5 a-4[10 a+3\{-x-3 a\}]$
$=5 a-4[10 a-3 x-9 a]$
$=5 \alpha-4[\alpha-3 x]$
$=5 a-4 a+12 x$
$=a+12 x$.

On removing the innermost bracket each term is multiplied by -2 . Then before multiplying by 3 , the expression within its bracket is simplified. The other steps will be easily seen.
46. Sometimes a line called a vinculum is drawn over the symbols to be connected; thus $a-\overline{b+c}$ is used with the same meaning as $a-(b+c)$, and hence $a-\overline{b+c}=a-b-c$.

Example 4. Find the value of

$$
84-7[-11 x-4\{-17 x+3(8-\overline{9-5 x})\}] .
$$

The expression $=84-7[-11 x-4\{-17 x+3(8-9+5 x)\}]$

$$
\begin{aligned}
& =84-7[-11 x-4\{-17 x+3(5 x-1)\}] \\
& =84-7[-11 x-4\{-17 x+15 x-3\}] \\
& =84-7[-11 x-4\{-2 x-3\}] \\
& =84-7[-11 x+8 x+12] \\
& =84-7[-3 x+12] \\
& =84+21 x-84 . \\
& =21 x .
\end{aligned}
$$

After a little practice the number of steps may be considerably diminished.

Insertion of Brackets.

47. The rules for insertion of brackets are the converse of those given on page 9 , and may be easily deduced from them.

For the following equivalents have been established in Arts. 19 and 20 :

$$
\begin{aligned}
& a+b-c=a+(b-c), \\
& a-b-c=a-(b+c), \\
& a-b+c=a-(b-c) .
\end{aligned}
$$

From these results the rules follow.
Rule. 1. Any part of an expression may be enclosed within brackets and the sign + prefixed, the sign of every term within the brackets remaining unaltered.

Examples.

$$
\begin{aligned}
a-b+c-d-e & =a-b+(c-d-e) . \\
x^{2}-a x+b x-a b & =\left(x^{2}-a x\right)+(b x-a b) .
\end{aligned}
$$

Rule. 2. Any part of an expression may be enclosed within brackets and the sign - prefixed, provided the sign of every term within the brackets be changed.

Examples.

$$
\begin{aligned}
a-b+c-d-e & =a-(b-c)-(d+e) \\
x y-a x-b y+a b & =(x y-b y)-(a x-a b)
\end{aligned}
$$

48. The terms of an expression can be bracketed in various ways.

Example. The expression $a x-b x+c x-a y+b y-c y$ may be written
or

$$
\begin{aligned}
& (a x-b x)+(c x-a y)+(b y-c y), \\
& (a x-b x+c x)-(a y-b y+c y), \\
& (a x-a y)-(b x-b y)+(c x-c y) .
\end{aligned}
$$

or
49. When every term of an expression is divisible by a common factor, the expression may be simplified by dividing each term by this factor, and enclosing the quotient within brackets, the common factor being placed outside as a coefficient.

Thus

$$
\begin{aligned}
3 x-21 & =3(x-7) ; \\
x^{2}-2 a x+4 a^{2} & =x^{2}-2 a(x-2 a) .
\end{aligned}
$$

EXAMPLES VI. b.

Simplify by removing brackets :

1. $16-3(2 x-3)-(2 x+3)$.
2. $4(x+3)-2(7+x)+2$.
3. $8(x-3)-(6-2 x)-2(x+2)+5(5-x)$.
4. $2 x-5\{3 x-7(4 x-9)\}$.
5. $4 x-3\{x-(1-y)+2(1-x)\}$.
6. $x-(y-z)-[x-y-z-2(y+z)]$.
7. $5 x+4(y-2 z)-4\{x+2(y-z)\}$. 8. $\quad a+\{-2 b+3(c-\overline{d-e})\}$.
8. $3 p-\{5 q-[6 q+2(10 q-p)]\}$. 10. $3 x-2[2 x-\{2(x-y)-y\}-y]$.
9. $2[4 x-\{2 y+(2 x-y)-(x+y)\}]-2(-x-\overline{y-x})$.
10. $20(2-x)+3(x-7)-2[x+9-3\{9-4(2-x)\}]$.
11. $-4(a+y)+24(b-x)-2[x+y+a-3\{y+a-4(b+x)\}]$.
12. Multiply $2 x-3 y-4(x-2 y)+5\{3 x-2(x-y)\}$

$$
\text { by } 4 x-(y-x)-3\{2 y-3(x+y)\} \text {. }
$$

In each of the following expressions bracket the powers of x so that the signs before the brackets may be (1) positive, (2) negative.
15. $a x^{4}+2 x^{3}-c x^{2}+2 x^{2}-b x^{3}-x^{4}$.
16. $a x^{2}+a^{2} x^{3}-b x^{2}-5 x^{2}-c x^{3}$.

Substitution of Negative Quantities.

50. To further illustrate the use of the rule of signs, we add some examples in substitution where some of the symbols denote negative quantities.

Example 1. If $\alpha=-4$, find the value of α^{3}.
Here

$$
a^{3}=(-4)^{3}=(-4) \times(-4) \times(-4)=-64 .
$$

By repeated applications of the rule of signs it may easily be shewn that any odd power of a negative quantity is negutive, and any even power of a negative quantity is positive.

Example 2. If $a=-1, b=3, c=-2$, find the value of $-3 a^{4} b c^{3}$.
Here $\quad-3 \alpha^{4} b c^{3}=-3 \times(-1)^{4} \times 3 \times(-2)^{3} \quad$ We write down at

$$
\begin{array}{l|l}
=-3 \times(+1) \times 3 \times(-8) & \begin{array}{l}
\text { once }(-1)^{4}=+1, \text { and } \\
\\
=72 .
\end{array} \\
(-2)^{3}=-8 .
\end{array}
$$

Example 3. If $2 x=3,4 y=3, z=-2$ find the value of

$$
\sqrt{ }(8 y+2 z+7)+\sqrt{ }(6 x-8 y+z)
$$

Here $x=\frac{3}{2}, y=\frac{3}{4}, z=-2$;

$$
\therefore 8 y+2 z+7=8 \times \frac{3}{4}+2(-2)+7=6-4+7=9,
$$

and

$$
6 x-8 y+z=6 \times \frac{3}{2}-8 \times \frac{3}{4}+(-2)=9-6-2=1 ;
$$

\therefore the whole expression $=\sqrt{ } 9+\sqrt{ } 1=4$.
E.C.

EXAMPLES VI. c.

If $a=-2, b=3, c=-1, x=-5, y=4$, find the value of

1. $3 a^{2} b$.
2. $8 a b c^{2}$.
3. $-5 c^{3}$.
4. $6 a^{2} c^{2}$.
5. $4 c^{3} y$.
6. $3 a^{2} c$.
7. $-4 a^{9} c^{4}$.
8. $3 c^{3} x^{3}$.
9. $5 a^{2} x^{2}$.
10. $-7 c^{4} x y$.
11. $-8 a x^{3}$.
12. $7 \alpha^{5} c^{4}$.

If $a=-4, b=-3, c=-1, f=0, x=4, y=1$, find the value of
13. $3 a^{2}+b x-4 c y$. 14. $3 b^{2} y^{4}-4 b^{2} f-6 c^{4} x$.
15. $2 \sqrt{ }(a c)-3 \sqrt{ }(x y)+\sqrt{ }\left(b^{2} c^{4}\right)$.
16. $3 \sqrt{ }(a c x)-2 \sqrt{ }\left(b^{2} y\right)-6 \sqrt{ } /\left(c^{2} y\right)$.
17. $7 \sqrt{a^{2} x}-3 \sqrt{b^{4} c^{2}}+5 \sqrt{f^{2}}$.
18. $3 c \sqrt{3 b c}-5 \sqrt{4 c^{2}}-2 c \sqrt{3 b c}$.

If $2 x=1,3 y=-4,2 z=7$, find the value of
19. $x^{2} y^{3}+2 y^{2} z-2 y z^{2}$. 20. $\frac{1}{x+y}+\frac{2}{y+z}$.

If $x=-2, y=3,4 \alpha=-1$, find the value of
21. $\frac{x}{a-y}-\frac{y}{a+2 x}$.
22. $3 x y+4 a^{2}+\sqrt{10-x y}$.
23. If $a=10, b=-\frac{1}{4}, c=-\frac{1}{5}$, find the value of $a^{4} b^{2} c^{3} \sqrt{\overline{b^{2}-c^{2}}}$.
24. If $x=1, y=-3, z=1$, find the value of

$$
\sqrt{\left(x^{2}+y^{3}+z\right)(x-y-3 z)} \div \sqrt[3]{x y^{3} z^{2}}
$$

25. If $a=1, b=2, c=-\frac{1}{2}, d=0$, find the value of

$$
\frac{a-b+c}{a-b-c}-\frac{a d-b c}{b d-a c}-\sqrt{\left(\frac{b^{3}}{a^{3}}-\frac{a^{3}}{c^{3}}\right) .}
$$

26. When $a=1, b=-1, c=2$, evaluate the expression

$$
\sqrt{3 a^{3}(b-c)+3 b^{3}(c-a)+3 c^{3}(a-b)} .
$$

27. Find the value of

$$
\sqrt{\left(x^{2}+y^{3}+z\right)(x-y-3 z)} \div \sqrt[3]{x y^{3} z^{2}}
$$

when $x=-1, y=-3, z=1$.
28. When $a=4, b=-2, c=\frac{3}{2}, d=-1$, find the value of
(1) $a^{3}-b^{3}-(a-b)^{3}-11(3 b+2 c)\left(2 c^{2}-\frac{d^{2}}{2}\right)$;
(2) $\sqrt[3]{4 c^{2}-a(a-2 b-d)}-\sqrt[3]{b^{4} c+11 b^{3} d^{2}}$.

CHAPTER VII.

Simple Equations.

51. An equation is a statement that two algebraical expressions are equal.

The parts of an equation separated by the sign of equality are called members or sides of the equation and are distinguished as the right side and the left side.
52. If the expressions are always equal, for any values of the symbols involved, the equation is called an identity. Thus $x+3+x+4=2 x+7$ is an identity.

If the two expressions are only equal for particular values of the symbols, the equation is called an equation of condition; it is in this sense that the word equation is generally used. Thus the equation $2+x=2 x-1$, will be found to be only true when $x=3$, and the value 3 is said to satisfy the equation. The object of the present chapter is to shew how to find the value which satisfies an equation of the simplest kind.
53. The letter whose value it is required to find is called the unknown quantity. The process of finding its value is called solving the equation. The value so found is called the root or the solution of the equation.
54. An equation which involves the unknown quantity in the first degree only is caller a simple equation. It is usual to denote the unknown quantity by the letter x.

The process of solving a simple equation depends only upon the following axioms :

1. If to equals we add equals the sums are equal.
2. If from equals we take equals the remainders are equal.
3. If equals are multiplied by equals the products are equal.
4. If equals are divided by equals the quotients are equal.
5. Consider the equation $7 x=14$.

It is required to find what numerical value x must have consistent with this statement.

Dividing both sides by 7 we get

$$
\begin{aligned}
& x=2, \\
& \frac{x}{2}=-6,
\end{aligned}
$$

[Axiom 4.]
Similarly, if [Axiom 3.]
Again, in the equation $7 x-2 x-x=23+15-10$, by collecting terms, we have

$$
4 x=28
$$

$$
\therefore \quad x=7
$$

56. To solve

$$
3 x-8=x+12 .
$$

Subtract x from both sides of the equation, and we get

$$
3 x-x-8=12,
$$

[Axiom 2.]
Adding 8 to both sides, we have

$$
3 x-x=12+8
$$

[Axiom 1.]
Thus we see that $+x$ has been removed from one side, and appears as $-x$ on the other ; and -8 has been removed from one side and appears as +8 on the other.

It is evident that similar steps may be employed in all cases. Hence we may enunciate the following rule :

Rule. Ainy term may be transposed from one side of the equation to the other by changing its sign.

It appears from this that we may change the sign of every term in an equation; for this is equivalent to transposing all the terms, and then making the right and left-hand members change places.
57. To solve $\frac{x}{2}-3=\frac{x}{4}+\frac{x}{5}$.

Here it will be convenient to begin by clearing the equation of fractional coefficients. This can always be done by multiplying both sides of the equation by the least common multiple of the denominators. [Axiom 3.]

Thus, multiplying by 20 ,

$$
10 x-60=5 x+4 x ;
$$

transposing,

$$
\begin{gathered}
10 x-5 x-4 x=60 ; \\
\therefore \quad x=60 .
\end{gathered}
$$

58. We can now give a general rule for solving any simple equation with one unknown quantity.

Rule. First, if necessary, clear of fractions; then transpose all the terms containing the unknown quantity to one side of the equation, and the known quantities to the other. Collect the terms on each side; divide both sides by the coefficient of the unknown quantity and the value required is obtained.

Example 1. Solve $5(x-3)-7(6-x)+3=24-3(8-x)$.
Removing brackets, $5 x-15-42+7 x+3=24-24+3 x$; transposing

$$
\begin{aligned}
5 x+7 x-3 x & =24-24+15+42-3 ; \\
\therefore \quad 9 x & =54 ; \\
\therefore \quad x & =6 .
\end{aligned}
$$

Example 2. Solve $(x+1)(2 x-1)-5 x=(2 x-3)(x-5)+47$.
Forming the products, we have

$$
2 x^{2}+x-1-5 x=2 x^{2}-13 x+15+47 .
$$

Erasing the term $2 x^{2}$ on each side, and transposing,

$$
\begin{aligned}
x-5 x+13 x & =15+47+1 ; \\
\therefore \quad 9 x & =63 ; \\
. \quad x & =7 .
\end{aligned}
$$

EXAMPLES VII. a.

Solve the following equations :

1. $6 x+3=15$.
2. $5 x-7=28$.
3. $13=7+2 x$.
4. $15=37-11 x$.
5. $4 x-7=11$.
6. $7 x=18-2 x$.
7. $3 x-18=7-2 x$.
8. $0=11-2 x+7-10 x$.
9. $5 x-17+3 x-5=6 x-7-8 x+115$.
10. $15-7 x-9 x-28+14 x-17=21-3 x+13-9 x+8 x$.
11. $5(x-3)=4(x-2)$.
12. $11(5-4 x)=7(5-6 x)$.
13. $3-7(x-1)=5-4 x$.
14. $5-4(x-3)=x-2(x-1)$.
15. $8(x-3)-2(3-x)=2(x+2)-5(5-x)$.
16. $\frac{1}{2} x+\frac{1}{3} x=x-3$.
17. $\frac{1}{2} x-\frac{1}{3} x=\frac{1}{4} x+\frac{1}{2}$.
18. $x-\frac{x}{4}-\frac{1}{2}=3+\frac{x}{4}$.
19. $\frac{1}{2} x-\frac{3}{4} x-1 \frac{1}{3}=\frac{1}{6} x+2$.
20. $(x+3)(2 x-3)-6 x=(x-4)(2 x+4)+12$.
21. $(2 x+1)(2 x+6)-7(x-2)=4(x+1)(x-1)-9 x$.
22. $(3 x+1)^{2}+6+18(x+1)^{2}=9 x(3 x-2)+65$.
23. We shall now give some equations of greater difficulty.

Example 1. Solve $5 x-(4 x-7)(3 x-5)=6-3(4 x-9)(x-1)$.
Simplifying, we have

$$
5 x-\left(12 x^{2}-41 x+35\right)=6-3\left(4 x^{2}-13 x+9\right) ;
$$

and by removing brackets

$$
5 x-12 x^{2}+41 x-35=6-12 x^{2}+39 x-27 .
$$

Erase the term - $12 x^{2}$ on each side and transpose ;
thus

$$
\begin{aligned}
5 x+41 x-39 x & =6-27+35 ; \\
\therefore \quad 7 x & =14 ; \\
\therefore \quad x & =2 .
\end{aligned}
$$

Note. Since the - sign before a bracket affects every term within it, in the first line of work we do not remove the brackets until we have formed the products.

Example 2. Solve $4-\frac{x-9}{8}=\frac{x}{22}-\frac{1}{2}$.
Multiply by 88 , the least common multiple of the denominators;

$$
352-11(x-9)=4 x-44
$$

removing brackets,

$$
352-11 x+99=4 x-44
$$

transposing,

$$
-11 x-4 x=-44-352-99 ;
$$ collecting terms and changing signs, $15 x=495$;

$$
\therefore \quad x=33 .
$$

Note. In this equation $-\frac{x-9}{8}$ is regarded as a single term with the minus sign before it. In fact it is equivalent to $-\frac{1}{8}(x-9)$, the vinculum or line between the numerator and denominator having the same effect as a bracket.

In certain cases it will be found more convenient not to multiply throughout by the L.c.m. of the denominator, but to clear of fractions in two or more steps.
Example 3. Solve $\frac{x-4}{3}+\frac{2 x-3}{35}=\frac{5 x-32}{9}-\frac{x+9}{28}$.
Multiplying throughout by 9 , we have

$$
\begin{aligned}
& 3 x-12+\frac{18 x-27}{35}=5 x-32-\frac{9 x+81}{28} ; \\
& \text { transposing, } \quad \frac{18 x-27}{35}+\frac{9 x+81}{28}=2 x-20 .
\end{aligned}
$$

Now clear of fractions by multiplying by $5 \times 7 \times 4$ or 140 ;

$$
\begin{aligned}
\therefore \quad 72 x-108+45 x+405 & =280 x-2800 ; \\
\therefore \quad 2800-108+405 & =280 x-72 x-45 x ; \\
\therefore \quad 3097 & =163 x ; \\
\therefore \quad x & =19 .
\end{aligned}
$$

60. To solve equations whose coefficients are decimals, we may express the decimals as vulgar fractions, and proceed as before; but it is often found more simple to work entirely in decimals.

Example. Solve $\cdot 375 x-1 \cdot 875=\cdot 12 x+1 \cdot 185$.
Transposing,

$$
\begin{aligned}
\cdot 375 x-\cdot 12 x & =1 \cdot 185+1 \cdot 875 ; \\
(\cdot 375-\cdot 12) x & =3.06 ; \\
\cdot 255 x & =3 \cdot 06 ; \\
\therefore \quad x & =\frac{3 \cdot 06}{255} \\
& =12 .
\end{aligned}
$$

collecting terms, $\quad(\cdot 375-\cdot 12) x=3 \cdot 06$; that is,

EXAMPLES VII. b.

Solve the equations:

1. $(x+15)(x-3)-(x-3)^{2}=30-15(x-1)$.
2. $21-x(2 x+1)+2(x-4)(x+2)=0$.
3. $3(x+5)-3(2 x-1)=32-4(x-5)^{2}+4 x^{2}$.
4. $(x-6)(2 x-9)-(11-2 x)(7-x)=5 x-4-7(x-2)$.
5. $\frac{x-1}{5}+\frac{x-9}{2}=3$.
6. $\frac{6 x-2}{9}+\frac{3 x+5}{18}=\frac{1}{3}$.
7. $\frac{10 x+1}{5}-1=5 x-2$.
8. $\frac{x-6}{4}-\frac{x-4}{6}=1-\frac{x}{10}$.
9. $\frac{x+12}{6}-x=6 \frac{1}{2}-\frac{x}{12}$.
10. $\frac{11-6 x}{5}-\frac{9-7 x}{2}=\frac{5(x-1)}{6}$.
11. $\frac{47-6 x}{5}-(x-6)=\frac{4(x-7)}{15}$.
12. $\frac{1-2 x}{7}-\frac{2-3 x}{8}=1 \frac{1}{2}+\frac{x}{4}$.
13. $\frac{1}{6}(x+4)-\frac{1}{2}(x-3)=\frac{1}{2}(3 x-5)-\frac{1}{4}(x-6)-\frac{1}{5}(x-2)$.
14. $\frac{1}{3}(x+4)-\frac{1}{9}(20-x)=\frac{1}{18}(5 x-1)-\frac{1}{6}(5 x-13)+8$.
15. $5-\frac{10 x+1}{27}-\frac{x}{8}=\frac{13 x+4}{18}-\frac{5(x-4)}{4}$.
16. $\frac{x+4}{39}-\frac{1}{5}(1-x)=2-\frac{3}{26}(6-5 x)-\frac{1}{5}(x+4)$.
17. $\frac{3}{11}+\frac{1}{44} x=\frac{1}{2}\left(\frac{4}{11}-\frac{x}{33}\right)-\frac{5}{66}+\frac{1}{3}\left(1-\frac{x}{22}\right)$.
18. $\cdot 7 x-3 \cdot 35=6 \cdot 4-3 \cdot 2 x$.
19. $\cdot 5 x+\cdot 25+\cdot 1+1 \cdot 25=\cdot 4 x$.
20. $3 \cdot 25 x-75 x=9+1 \cdot 5 x$.
21. $\cdot 2 x-\cdot 01 x+\cdot 005 x=11 \cdot 7$.
22. $\cdot 5 x-\cdot 6 x=\cdot 75 x-11$.
23. $\cdot 4 x-83 x=7-3$.
[Chapter X VI. will furnish further practice in Simple Equations.]

CHAPTER VIII.

Symbolical Expression.

61. In solving algebraical problems the chief difficulty of the student is to express the conditions of the question by means of symbols so as to form an equation which may be solved by the methods already explained. Practice alone can give the requisite facility, but the easy examples in this chapter will furnish the student with a useful introduction to the problems in Chapter Ix.

Example 1. By how much does x exceed 17 ?
Take a numerical instance ; "by how much does 27 exceed 17 ?"
The answer obviously is 10 , which is equal to $27-17$.
Hence the excess of x over 17 is $x-17$.
Similarly the defect of x from 17 is $17-x$.
Example 2: If x is one part of 45 the other part is $45-x$.
Example 3. If x is one factor of 45 the other factor is $\frac{45}{x}$.
Example 4. How far can a man walk in a hours at the rate of 4 miles an hour?

In 1 hour he walks 4 miles.
In a hours he walks a times as far, that is, $4 a$ miles.
Example 5. If $£ 20$ is divided equally among y persons, the share of each is the total sum divided by the number of persons, or $£ \frac{20}{y}$.

Example 6. Out of a purse containing $£ x$ and y florins a man spends z shillings; express in pence the sum left.
$\mathfrak{£} x=20 x$ shillings,
and
y florins $=2 y$ shillings ;
\therefore the sum left $=(20 x+2 y-z)$ shillings

$$
=12(20 x+2 y-z) \text { pence. }
$$

EXAMPLES VIII. a.

1. By how much does x exceed 5 ?
2. By how much is y less than 15 ?
3. What must be added to 6 to make b ?
4. What is the quotient when 3 is divided by a ?
5. By how much does $6 x$ exceed $2 x$?
6. The sum of two numbers is x and one of the numbers is 10 ; what is the other?
7. The sum of three numbers is 100 ; if one of them is 25 and another is x, what is the third?
8. The product of two factors is $4 x$; if one of the factors is 4 , what is the other?
9. How many times is x contained in $2 y$?
10. The difference of two numbers is 8 , and the greater of them is α; what is the other?
11. The sum of 12 equal numbers is $48 x$; what is the value of each number?
12. If there are x numbers each equal to 2α, what is their sum?
13. If there are x numbers each equal to p, what is their product?
14. If there are n books each worth y shillings, what is the total cost?
15. How many books each worth 2 shillings can be bought for y shillings ?
16. What is the price in pence of n oranges at sixpence a score?
17. If I spend n shillings out of a sum of $£ 5$, how many shillings have I left?
18. What is the daily wage in shillings of a man who earns $£ 6$ in p weeks, working 6 days a week ?
19. If x persons combine to pay a bill of $£ y$, what is the share of each in shillings?
20. How many hours will it take to travel x miles at 10 miles an hour?
21. How far can I walk in p hours at the rate of q miles an hour?
22. If I can walk m miles in n days, what is my rate per day?
23. How many days will it take to travel y miles at x miles a day?
24. We subjoin a few harder examples worked out in full.

Example 1. What is (1) the sum, (2) the product of three consecutive numbers of which the least is n ?

The two numbers consecutive to n are $n+1$ and $n+2$;

$$
\begin{aligned}
\therefore \text { the sum } & =n+(n+1)+(n+2) \\
& =3 n+3 . \\
& =n(n+1)(n+2) .
\end{aligned}
$$

Example 2. A boy is x years old, and five years hence his age will be half that of his father : how old is the father now?

In five years the boy will be $x+5$ years old ; therefore his father will then be $2(x+5)$, or $2 x+10$ years old ; his present age must therefore be $2 x+10-5$ or $2 x+5$ years.

Example 3. A and B are playing for money ; A begins with $£ p$ and B with q shillings. B wins $£ x$; express by an equation the fact that A has now three times as much as B.

What B has won A has lost;
$\therefore A$ has $p-x$ pounds, that is $20(p-x)$ shillings,
B has q shillings $+x$ pounds, that is $q+20 x$ shillings.
Thus the required equation is $20(p-x)=3(q+20 x)$.
Example 4. How many men will be required to do in p hours what q men do in $n p$ hours?
$n p$ hours is the time occupied by q men ;
$\therefore 1$ hour $q \times n p$ men ;
that is, p hours...................... $\frac{q \times n p}{p}$ men.
Therefore the required number of men is $q n$.

EXAMPLES VIII. b.

1. Write down three consecutive numbers of which a is the least.
2. Write down four consecutive numbers of which b is the greatest.
3. What is the next odd number after $2 n-1$?
4. What is the even number next before $2 n$?
5. How old is a man who will be x years old in 15 years?
6. How old was a man x years ago if his present age is n years?
7. In $2 x$ years a man will be y years old, what is his present age ?
8. How old is a man who in x years will be twice as old as his son now aged 20 years?
9. In 5 years a boy will be x years old; what is the present age of his father if he is twice as old as his son ?
10. A has $£ m$ and B has n shillings; after A has won 3 shillings from B, each has the same amount. Express this in algebraical symbols.
11. A has 25 shillings and B has 13 shillings; after B has won x shillings he then has four times as much as A. Express this in algebraical symbols.
12. How many miles can a man walk in 30 minutes if he walks 1 mile in x minutes?
13. How long will it take a man to walk p miles if he walks 15 miles in q hours?
14. How far can a pigeon fly in x hours at the rate of 2 miles in 7 minutes?
15. If x men do a work in $5 x$ hours, how many men will be required to do the same work in y hours?
16. If a bill is shared equally among n persons, and each pays $6 s .8 d$. , how many pounds does the bill amount to ?
17. A man has $£ x$ in his purse, he pays away 25 shillings, and receives y pence ; express in shillings the sum he has left.
18. How many pounds does a man save in a year, if he earns $£ x$ a week and spends y shillings a calendar month ?
19. What is the total cost of $6 x$ nuts and $4 x$ plums, when x plums cost a shilling and plums are three times as expensive as nuts?
20. If x horses eat m lbs. of corn in $a b$ days, how long will am lbs. last $b x$ horses?
21. If p is the cost in pence of k lbs. of tea, how many shillings will be required to buy $m \mathrm{oz}$. ?
22. A person buys goods for $\mathfrak{£} \alpha$ and sells them for $\mathfrak{£}(\alpha+b)$: what is his gain per cent.?
23. A person buys goods for $\mathfrak{f}(a+b)$ and sells them for $£ a$: what is his loss per cent.?
24. If a person buys an article for $\mathfrak{f} \alpha$ and sells it at a gain of b per cent., how much does he obtain for it?

CHAP'TER IX.

Problems leading to Simple Equations.

63. The principles of the last chapter may now be employed to solve various problems.

The method of procedure is as follows :
Represent the unknown quantity by a symbol x, and express in symbolical language the conditions of the question; we thus obtain a simple equation which can be solved by the methods already given in Chapter VII.

Example I. Find two numbers whose sum is 28, and whose difference is 4 .

Let x be the smaller number, then $x+4$ is the greater.
Their sum is $x+(x+4)$, which is to be equal to 28 .
Hence

$$
\begin{aligned}
x+x+4 & =28 ; \\
2 x & =24 ; \\
\therefore \quad x & =12 . \\
x+4 & =16,
\end{aligned}
$$

so that the numbers are 12 and 16 .
The student is advised to test his solution by finding whether it satisfies the data of the question or not.

Example II. Divide $£ 47$ between A, B, C, so that A may have £10 more than B, and $B £ 8$ more than C.

Let x represent the number of pounds that C has; then B has $x+8$ pounds, and A has $x+8+10$ pounds.

Hence

$$
\begin{aligned}
x+(x+8)+(x+8+10) & =47 ; \\
x+x+8+x+8+10 & =47, \\
3 x & =21 ;
\end{aligned}
$$

so that C has $£ 7, B £ 15, A £ 25$.

$$
\therefore \quad x=7 \text {; }
$$

EXAMPLES IX. a.

1. Six times a number increased by 11 is equal to 65 ; find it.
2. Find a number which when multiplied by 11 and then diminished by 18 is equal to 15 .
3. If 3 be added to a number, and the sum multiplied by 12 , the result is 84 ; find the number.
4. One number exceeds another by 3 , and their sum is 27 ; find them.
5. Find two numbers whose sum is 30 , such that one of them is greater than the other by 8 .
6. Find two numbers which differ by 10 , so that one is three times the other.
7. Find two numbers whose sum is 19 , such that one shall exceed twice the other by 1 .
8. Find two numbers whose sum shall be 26 and their difference 8.
9. Divide $£ 100$ between A and B so that B may have $£ 30$ more than A.
10. Divide $£ 66$ between A, B, and C so that B may have $£ 8$ more than A, and $C £ 14$ more than B.
11. A, B, and C have $£ 72$ between them ; C has twice as much as B, and B has $£ 4$ less than A; find the share of each.
12. How must a sum of 73 rupees be divided between A, B, and C, so that B may have 8 rupees less than A and 4 rupees more than C ?

Example III. Divide 60 into two parts, so that three times the greater may exceed 100 by as much as eight times the less falls short of 200 .

Let x be the greater part, then $60-x$ is the less.
Three times the greater part is $3 x$, and its excess over 100 is

$$
3 x-100
$$

Fight times the less is $8(60-x)$, and its defect from 200 is

$$
200-8(60-x) .
$$

Whence the symbolical statement of the question is

$$
\begin{aligned}
3 x-100 & =200-8(60-x) ; \\
3 x-100 & =200-480+8 x, \\
480-100-200 & =8 x-3 x, \\
5 x & =180 ; \\
\therefore x & =36, \text { the greater part, } \\
60-x & =24, \text { the less. }
\end{aligned}
$$

and

Example IV. A is 4 years older than B, and half A 's age exceeds one-sixth of B 's age by 8 years ; find their ages.

Let x be the number of years in B 's age, then A 's age is $x+4$ years.

One-half of A 's age is represented by $\frac{1}{2}(x+4)$ years, and one-sixth of B 's age by $\frac{1}{6} x$ years.

Hence
multiplying by 6 ,

$$
\begin{aligned}
\frac{1}{2}(x+4)-\frac{1}{6} x & =8 ; \\
3 x+12-x & =48 ; \\
\therefore \quad 2 x & =36 ; \\
\therefore \quad x & =18 .
\end{aligned}
$$

Thus B 's age is 18 years, and A 's age is 22 years.
13. Divide 75 into two parts, so that three times one part may be double of the other.
14. Divide 122 into two parts, such that one may be as much above 72 as twice the other is below 60 .
15. A certain number is doubled and then increased by 5 , and the result is less by 1 than three times the number; find it.
16. How much must be added to 28 so that the resulting number may be eight times the added part?
17. Find the number whose double exceeds its half by 9 .
18. What is the number whose seventh part exceeds its eighth part by 1 ?
19. Divide 48 into two parts, so that one part may be three-fifths of the other.
20. If A, B, and C have $£ 76$ between them, and A 's money is double of B 's, and C 's one-sixth of B 's, what is the share of each ?
21. Divide $£ 511$ between A, B, and C, so that B 's share shall be one-third of A 's, and C 's share three-fourths of A 's and B 's together.
22. B is 16 years younger than A, and one-half B 's age is equal to one-third of A 's; how old are they?
23. A is 8 years younger than B, and 24 years older than C; one-sixth of A 's age, one-half of B 's, and one-third of C 's together amount to 38 years; find their ages.
24. Find two consecutive numbers whose product exceeds the square of the smaller by 7. [See Art. 62, Ex. 1.]
25. The difference between the squares of two consecutive numbers is 31 ; find the numbers.
64. We shall now give examples of somewhat greater difficulty.

Example I. $\quad A$ has $£ 9$, and B has 4 guineas; after B has won from A a certain sum, A has then five-sixths of what B has; how much did B win?

Suppose that B wins x shillings, A has then $180-x$ shillings, and B has $84+x$ shillings.

Hence

$$
\begin{aligned}
180-x & =\frac{5}{6}(84+x) ; \\
1080-6 x & =420+5 x, \\
11 x & =660 ; \\
\therefore \quad x & =60 .
\end{aligned}
$$

Therefore B wins 60 shillings, or $£ 3$.
Example II. A is twice as old as B, ten years ago he was four times as old ; what are their present ages?

Let B 's age be x years, then A 's age is $2 x$ years.
Ten years ago their ages were respectively $x-10$ and $2 x-10$ years; thus we have

$$
\begin{aligned}
2 x-10 & =4(x-10) ; \\
2 x-10 & =4 x-40, \\
2 x & =30 ; \\
\therefore \quad x & =15,
\end{aligned}
$$

so that B is 15 years old, $A 30$ years.

EXAMPLES IX. b.

1. A has $£ 12$ and B has $£ 8$; after B has lost a certain sum to A, his money is only three-sevenths of A 's; how much did A win?
2. A and B begin to play each with $£ 15$; if they play till B 's money is four-elevenths of A 's, what does B lose?
3. A and B have $£ 28$ between them ; A gives $£ 3$ to B and then finds he has six times as much money as B; how much had each at first?
4. A had three times as much money as B; after giving $£ 3$ to B he had only twice as much ; what had each at first?
5. A father is four times as old as his son ; in 16 years he will only be twice as old ; find their ages.
6. A is 20 years older than B, and five years ago A was twice as old as B; find their ages.
7. How old is a man whose age 10 years ago was three-eighths of what it will be in 15 years?
8. A is twice as old as B; 5 years ago he was three times as old ; what are their present ages?
9. A father is 24 years older than his son; in 7 years the son's age will be two-fifths of his father's age ; what are their present ages?

Example III. A person spent £28. 4s. in buying geese and ducks; if each goose cost 7 s ., and each duck $3 s$. , and if the total number of birds bought was 108, how many of each did he buy?

In questions of this kind it is of essential importance to have all quantities expressed in the same denomination; in the present instance it will be convenient to express the money in shillings.

Let x be the number of geese, then $108-x$ is the number of ducks.
Since each goose costs 7 shillings, x geese cost $7 x$ shillings.
And since each duck costs 3 shillings, $108-x$ ducks cost $3(108-x$) shillings.

Therefore the amount spent is

$$
7 x+3(108-x) \text { shillings. }
$$

But the question also states that the amount is $£ 28.4$ s., that is 564 shillings.

Hence

$$
\begin{aligned}
7 x+3(108-x) & =564 ; \\
7 x+324-3 x & =564, \\
4 x & =240, \\
\therefore \quad x & =60, \text { the number of geese, } \\
108-x & =48, \text { the number of ducks. }
\end{aligned}
$$

and
Note. In all these examples it should be noticed that the unknown quantity x represents a number of pounds, ducks, years, etc.; and the student must be careful to avoid beginning a solution with a supposition of the kind, "let $x=A$'s share" or "let $x=$ the ducks," or any statement so vague and inexact.

It will sometimes be found easier not to put x equal to the quantity directly required, but to some other quantity involved in the question : by this means the equation is often simplified.

Example IV. A woman spends $4 s .4 \frac{1}{2} d$. in buying eggs, and finds that 9 of them cost as much over one shilling as 15 cost under two shillings; how many eggs did she buy?

Let x be the price of an egg in pence ; then 9 eggs cost $9 x$ pence, and 15 eggs cost $15 x$ pence;

$$
\begin{aligned}
9 x-12 & =24-15 x \\
24 x & =36 ; \\
\therefore x & =1 \frac{1}{2} .
\end{aligned}
$$

Thus the price of an egg is $1 \frac{1}{2} d$. , and the number of eggs $=52 \frac{1}{2} \div 1 \frac{1}{2}=35$.
10. A sum of $£ 3$ is divided between 50 men and women, the men each receiving $1 s .6 d$. and the women $1 s$. ; find the number of each sex.
11. The price of 13 yards of cloth is as much less than $£ 1$ as the price of 27 yards exceeds $£ 2$; find the price per yard.
12. A hundredweight of tea, worth $£ 19.12$ s., is made up of two sorts, part worth $4 s$. a pound and the rest worth $2 s$. a pound ; how much is there of each sort?
13. A man is hired for 60 days on condition that for each day he works he shall receive 7 s .6 d ., but for each day that he is idle he shall pay $2 s .6 d$. for his board : at the end he received $£ 6$; how many days had he worked?
14. A sum of $£ 2.11 s$. is made up of 32 coins, which are either florins or shillings; how many are there of each ?
15. A sum of $£ 3$. $2 s$. was paid in half-crowns, florins, and shillings; the number of half-crowns used was four times the number of florins and ten times the number of shillings; how many were there of each ?
16. A person buys coffee and tea at $2 s$. and $3 s$. a pound respectively; he spends $£ 3.1 s .9 d$. , and in all gets 24 lbs.; how much of each did he buy?
17. A man sold a horse for a sum of money which was greater by £38 than half the price he paid for it, and gained thereby ten guineas; what did he pay for the horse ?
18. Two boys have 240 marbles between them; one arranges his in heaps of 6 each, the other in heaps of 9 each. There are 36 heaps altogether ; how many marbles has each ?
19. A man's age is four times the combined ages of his two sons, one of whom is three times as old as the other; in 24 years their combined ages will be 12 years less than their father's age ; find their respective ages.
20. A sum of money is divided between three persons, A, B, and C, in such a way that A and B have $£ 42$ between them, B and C have £45, and C and A have £53; what is the share of each?
21. A person bought a number of oranges for $3 s .9 d$. , and finds that 12 of them cost as much over $5 d$. as 16 of them cost under $2 s .6 d$. ; how many oranges were bought?
22. By buying eggs at 15 for a shilling and selling them at a dozen for 15 d . a man gained 13 s .6 d .; find the number of eggs.
23. I bought a certain number of apples at four a penny, and three-fifths of that number at three a penny; by selling them at sixteen for fivepence I gained $4 d$.; how many apples did I buy?
24. If 8 lbs . of tea and 24 lbs . of sugar cost $£ 1.12 \mathrm{~s} .8 d$. , and if 3 lbs . of tea cost as much as 40 lbs . of sugar, find the price of each per pound.
25. Four dozen of port and three dozen of sherry cost $£ 15.8$ s.; if a bottle of port costs $1 s .2 d$. more than a bottle of sherry, find the price of each per dozen.

CHAPTER X.

Simultaneous Equations.

65. Consider the equation $2 x+5 y=23$, which contains two unknown quantities.

By transposition we get
that is,

$$
\begin{align*}
5 y & =23-2 x ; \\
y & =\frac{23-2 x}{5} .
\end{align*}
$$

From this it appears that for every value we choose to give to x there will be one corresponding value of y. Thus we shall be able to find as many pairs of values as we please which satisfy the given equation.

For instance, if $x=1$, then from (1) we obtain $y=\frac{21}{5}$.
Again, if $x=-2$, then $y=\frac{27}{5}$; and so on.
But if also we have a second equation of the same kind, such as

$$
\begin{align*}
& 3 x+4 y=24, \\
& y=\frac{24-3 x}{4} \cdots \tag{2}
\end{align*}
$$

If now we seek values of x and y which satisfy both equations, the values of y in (1) and (2) must be identical ;

$$
\therefore \quad \frac{23-2 x}{5}=\frac{24-3 x}{4} ; \text { whence } x=4 .
$$

Substituting this value in the first equation, we have

$$
8+5 y=23 ; \text { whence } y=3
$$

Thus, if both equations are to be satisfied by the same values of x and y, there is only one solution, namely, $x=4, y=3$.
66. Definition. When two or more equations are satisfied by the same values of the unknown quantities they are called simultaneous equations.

We proceed to explain the different methods for solving simultaneous equations. In the present chapter we shall confine our attention to the simpler cases in which the unknown quantities are involved in the first degree.
67. Since the two equations are simultaneously true, any equation formed by combining them will be satisfied by the values of x and y which satisfy the original equations. Our object will always be to obtain an equation which involves one only of the unknown quantities. The process by which we get rid of either of the unknown quantities is called elimination, and it must be effected in different ways according to the nature of the equations proposed.

Example 1. Solve

$$
\begin{align*}
& 3 x+7 y=27 \tag{1}\\
& 5 x+2 y=16
\end{align*}
$$

To eliminate x we multiply (1) by 5 and (2) by 3 , so as to make the coefficients of x in both equations equal. This gives

$$
\begin{aligned}
15 x+35 y & =135, \\
15 x+6 y & =48 ; \\
29 y & =87 ; \\
\therefore y & =3 .
\end{aligned}
$$

subtracting,
To find x, substitute this value of y in either of the given equations.

Thus from (1)

$$
\left.\begin{array}{rl}
3 x+21 & =27 ; \\
\therefore \quad x & =2, \\
y & =3 .
\end{array}\right\}
$$

and
Note. When one of the unknowns has been found, it is immaterial which of the equations we use to complete the solution. Thus, in the present example, if we substitute 3 for y in (2), we have

$$
\begin{aligned}
5 x+6 & =16 ; \\
\therefore x & =2, \text { as before. }
\end{aligned}
$$

Example 2. Solve

$$
\begin{align*}
& 7 x+2 y=47 \tag{1}\\
& 5 x-4 y=1
\end{align*}
$$

Here it will be more convenient to eliminate y.
Multiplying (1) by 2, $\quad 14 x+4 y=94$,
and from (2)
adding,

$$
\begin{aligned}
5 x-4 y & =1 ; \\
19 x & =95 ; \\
\therefore \quad x & =5 .
\end{aligned}
$$

Substitute this value in (1),

$$
\left.\begin{array}{rl}
\therefore 3 \overline{5}+2 y & =47 ; \\
\therefore y & =6, \\
x & =5 .
\end{array}\right\}
$$

and
Note. Add when the coefficients of one unknown are equal and unlike in sign ; subtract when the coefficients are equal and like in sign.

Example 3. Solve

Here we can eliminate x by substituting in (2) its value obtained from (1). Thus
and from (1)

$$
\begin{aligned}
24-\frac{7}{2}(5 y+1) & =3 y ; \\
\therefore 48-35 y-7 & =6 y ; \\
\therefore 41 & =41 y ; \\
\therefore \quad y & =1,\}
\end{aligned}
$$

68. Any one of the methods given above will be found sufficient; but there are certain arithmetical artifices which will sometimes shorten the work.

Noticing that 28 and 63 contain a common factor 7, we shall make the coefficients of x in the two equations equal to the least common multiple of 28 and 63 if we multiply (1) by 9 and (2) by 4 .

Thus

$$
\begin{aligned}
252 x-207 y & =198, \\
252 x-220 y & =68 ; \\
13 y & =130 ; \\
y & =10, \\
x & =9 .
\end{aligned}
$$

$$
\text { subtracting, } \quad 13 y=130 \text {; }
$$

that is,
and therefore from (1),

EXAMPLES X. a.

Solve the equations :

1. $\begin{aligned} x+y=19, \\ x-y=7 .\end{aligned}$
2. $x-y=6$,
3. $x-y=25$,
$x+y=0$.
$x+y=13$.
4. $3 x+5 y=50$,
5. $x+5 y=18$,
6. $4 x+y=10$,
$4 x+3 y=41$.
$3 x+2 y=41$.
$5 x+7 y=47$.
7. $4 x+5 y=4$,
$5 x-3 y=79$.
8. $\begin{aligned} 4 x-3 y & =0, \\ 7 x-4 y & =180 .\end{aligned}$
9. $2 x+3 y=22$, $5 x+2 y=0$.
10. $5 x=7 y-21$, $21 x-9 y=75$.
11. $55 x=33 y$, $10 x=7 y-15$.
12. $5 x-7 y=11$,
13. $3 x+10=5 y$,
14. $4 y=47+3 x$,
$7 y=4 x+13$.
$5 x=30-15 y$.
15. $11 x+13 y=7$, $13 x+11 y=17$.
16. $\begin{aligned} 13 x-17 y & =11, \\ 29 x-39 y & =17 .\end{aligned}$
17. $\begin{aligned} 19 x+17 y & =7, \\ 41 x+37 y & =17 .\end{aligned}$

$$
\begin{align*}
& \text { Example. Solve } \tag{1}\\
& 28 x-23 y=22 \\
& 63 x-55 y=17 \tag{2}
\end{align*}
$$

$$
\begin{align*}
& 2 x=5 y+1 \\
& \text { (1), } \\
& 24-7 x=3 y \tag{2}
\end{align*}
$$

69. Before proceeding to solve, it will sometimes be necessary to simplify the equations.

Example. Solve $3 x-\frac{y-5}{7}=\frac{4 x-3}{2}$

$$
\begin{equation*}
\frac{3 y+4}{5}-\frac{1}{3}(2 x-5)=y \tag{1}
\end{equation*}
$$

Clear of fractions. Thus
from (1),

$$
\begin{align*}
42 x-2 y+10 & =28 x-21 ; \\
\therefore \quad 14 x-2 y & =-31 \ldots \ldots . \tag{3}
\end{align*}
$$

From (2),

$$
\begin{align*}
9 y+12-10 x+25 & =15 y ; \\
\therefore \quad 10 x+6 y & =37 \ldots \tag{4}
\end{align*}
$$

Eliminating y from (3) and (4), we find that

$$
x=-\frac{14}{13} .
$$

To obtain the value of y, instead of substituting the value of x in one of the given equations, it will be found simpler to go through a second elimination, thus : eliminating x from (3) and (4), we find that

$$
y=\frac{207}{26} .
$$

70. Simultaneous equations may often be conveniently solved by considering $\frac{1}{x}$ and $\frac{1}{y}$ as the unknown quantities.

Example. Solve

$$
\begin{gather*}
\frac{8}{x}-\frac{9}{y}=1 \tag{1}\\
\frac{10}{x}+\frac{6}{y}=7 \tag{2}
\end{gather*}
$$

Multiply (1) by 2 and (2) by 3 ; thus

$$
\begin{aligned}
& \frac{16}{x}-\frac{18}{y}=2, \\
& \frac{30}{x}+\frac{18}{y}=21 ;
\end{aligned}
$$

adding,

$$
\begin{aligned}
\frac{46}{x} & =23 ; \\
46 & =23 x ; \\
\therefore \quad x & =2 ; \\
y & =3 .
\end{aligned}
$$

multiplying up,
and by substituting in (1),

EXAMPLES X. b.

Solve the equations :

1. $2 x-y=4$,
$\frac{x}{2}+\frac{y}{4}=5$.
2. $\begin{aligned} 4 x-y & =1, \\ \frac{x}{2}+\frac{3 y}{7} & =4 .\end{aligned}$
3. $x+2 y=13$,
$\frac{2 x}{3}-\frac{y}{5}=1$.
4. $\frac{3 x}{10}+y=1$,
$x+3 y=2$.
5. $x-\frac{2 y}{3}=0$,
$4 x-3 y=1$.
6. $\frac{3 x}{5}-y=7$,
$4 x+5 y=0$.
7. $x-y=0$,
8. $\begin{aligned} \frac{1}{2}(x+3) & =0, \\ \frac{1}{6} x-y & =4 \frac{1}{2} .\end{aligned}$
9. $\begin{aligned} \frac{3}{5} x-2 y & =20 . \\ \frac{1}{2}(y+8) & =2 .\end{aligned}$
10. $3(x-y)+2(x+y)=15, \quad 3(x+y)+2(x-y)=25$.
11. $3(x+y-5)=2(y-x), \quad 3(x-y-7)+2(x+y-2)=0$.
12. $4(2 x-y-6)=3(3 x-2 y-5), \quad 2(x-y+1)+4 x=3 y+4$.
13. $7(2 x-y)+5(3 y-4 x)+30=0, \quad 5(y-x+3)=6(y-2 x)$.
14.

$$
\frac{x+4}{5}=\frac{y-4}{7}=2 x+y+4 . \quad \text { 15. } \frac{x-12}{4}=\frac{y+18}{3}=\frac{2 x+3 y}{2} .
$$

16. $\frac{8}{x}+\frac{9}{y}=7$,
17. $\begin{aligned} \frac{3}{x} & +\frac{5}{y}=37, \\ \frac{7}{x}-\frac{3}{y} & =13 .\end{aligned}$
18. $\frac{10}{x}-\frac{3}{y}=8$,
$\frac{6}{x}-\frac{1}{y}=2 \frac{2}{3}$.
$\frac{3}{x}+\frac{2}{y}=-3 \frac{2}{5}$.
19. In order to solve simultaneous equations which contain two unknown quantities we have seen that we must have two equations. Similarly we find that in order to solve simultaneous equations which contain three unknown quantities we must have three equations.

Rule. Eliminate one of the unknowns from any pair of the equations, and then eliminate the same unknown from another pair. Two equations involving two unknowns are thus obtained, which may be solved by the rules already given. The remaining unknown is then found by substituting in any one of the given equations.

Example. Solve the equations:

$$
x+\frac{5}{7} y=z-\frac{8}{7}, \quad 4 x+2 y-3 z=0, \quad x-\frac{4}{5}(y-z)=7 .
$$

Clearing of fractions, and transposing, we have

$$
\begin{align*}
& 7 x+5 y-7 z=-8 \tag{1}\\
& 4 x+2 y-3 z=0 \ldots \tag{2}\\
& 5 x-4 y+4 z=35 \tag{3}
\end{align*}
$$

Choose y as the unknown to be eliminated.
Multiply (2) by $5, \quad 20 x+10 y-15 z=0$;
Multiply (1) by $2, \quad 14 x+10 y-14 z=-16$;
by subtraction,

$$
\begin{equation*}
6 x-z=16 \tag{4}
\end{equation*}
$$

Multiply (2) by 2,

$$
8 x+4 y-6 z=0 ;
$$

$$
5 x-4 y+4 z=35 ;
$$

$$
13 x-2 z=35 .
$$

$$
12 x-2 z=32 .
$$

$$
x=3 .
$$

From (4) we find and from (2),

$$
\begin{aligned}
& z=2 \\
& y=-3 .
\end{aligned}
$$

EXAMPLES X. c.
Solve the equations :

1. $\begin{aligned} 3 x-2 y+z & =4, \\ 2 x+3 y-z & =3, \\ x+y+z & =8 .\end{aligned}$
2. $7 x-4 y-3 z=0$,
$5 x-3 y+2 z=12$,
$3 x+2 y-5 z=0$.
3. $\begin{aligned} 3 x+4 y-6 z & =16, \\ 4 x+y-z & =24, \\ x-3 y-2 z & =1 .\end{aligned}$
4. $4 x+3 y-z=9$,
$9 x-y+5 z=16$,
$x+4 y-3 z=2$.
5. $3 y-6 z-5 x=4, \quad 2 z-3 x-y=8, \quad x-2 y+2 z+2=0$.
6. $\quad 3 y+2 z+5 x=21, \quad 8 x-3 z+y=3, \quad 2 z+2 x-3 y=39$.
7. $\frac{1}{2} x+y+\frac{1}{2} z=\frac{1}{2}$,

$$
\begin{aligned}
& x+2 y+\frac{1}{3} z=\frac{1}{3} \\
& x+y-9 z=1 .
\end{aligned}
$$

8. $\frac{1}{2} x-\frac{1}{4} y=5-\frac{1}{6} z$, $\frac{1}{6} x-\frac{1}{3} y=3-\frac{1}{6} z$, $2 y+7=\frac{1}{4}(z-x)$.
9. $\frac{1}{3} x+\frac{1}{4}(y+z)=1 \frac{\dot{2}}{3}, \quad 4 x+\frac{1}{2}(z-y)=11, \quad \frac{1}{3}(z-4 x)=y$,
10. $2 x-\frac{1}{5}(z-2 y)=2, \quad \frac{1}{3}(x+y)=\frac{1}{7}(3-z), \quad x=4 y+3 z$.
11. $\frac{x}{3}-\frac{y}{2}=y+\frac{z}{2}=x+y+z+2=0$.

CHAPTER XI.

Problems leading to Simultaneous Equations.

72. In the Examples discussed in the last chapter we have seen that it is essential to have as many equations as there are unknown quantities to determine. Consequently in the solution of problems which give rise to simultaneous equations, it will always be necessary that the statement of the question should contain as many independent conditions as there are quantities to be determined.

Example 1. Find two numbers whose difference is 11, and onefifth of whose sum is 9 ,

Let x be the greater number, y the less ;
then

$$
\begin{equation*}
x-y=11 \tag{1}
\end{equation*}
$$

Also
or

$$
\frac{x+y}{5}=9
$$

$$
\begin{equation*}
x+y=45 \tag{2}
\end{equation*}
$$

By addition $2 x=56$; and by subtraction $2 y=34$.
The numbers are therefore 28 and 17.
Example 2. If 15 lbs . of tea and 17 lbs . of coffee together cost £3. $5 \% .6 d$., and 25 lbs . of tea and 13 lbs . of coffee together cost £4. 6 s . $2 d$.; find the price of each per pound.

Suppose a pound of tea to cost x shillings,
and \qquad coffee \qquad y
Then from the question we have

Multiplying (1) by 5 and (2) by 3 , we have

$$
\begin{aligned}
75 x+85 y & =327 \frac{1}{2}, \\
75 x+39 y & =258 \frac{1}{2} . \\
46 y & =69, \\
\therefore y & =1 \frac{1}{2} . \\
15 x+25 \frac{1}{2} & =65 \frac{1}{2} \\
15 x & =40 \\
\therefore x & =2 \frac{2}{3} .
\end{aligned}
$$

And from (1),
whence
\therefore the cost of a pound of tea is $2 \frac{2}{3}$ shillings, or $2 \mathrm{~s} .8 d$. , and the cost of a pound of coffee is $1 \frac{1}{2}$ shillings, or $1 s .6 d$.

$$
\begin{align*}
& 25 x+13 y=86 \frac{1}{6} \tag{2}
\end{align*}
$$

Example 3. In a bag containing black and white balls, half the number of white is equal to a third of the number of black; and twice the whole number of balls exceeds three times the number of black balls by four. How many balls did the bag contain?
Let x be the number of white balls, and y the number of black balls; then the bag contains $x+y$ balls.
We have the following equations :

$$
\begin{align*}
\frac{x}{2} & =\frac{y}{3} \ldots \ldots \tag{1}\\
2(x+y) & =3 y+4 \tag{2}
\end{align*}
$$

Substituting from (1) in 2 , we obtain
whence

$$
\frac{4 y}{3}+2 y=3 y+4
$$

and from (1),

$$
y=12 \text {; }
$$

Thus there are 8 white and 12 black balls.
73. In a problem involving the digits of a number the student should carefully notice the way in which the value of a number is algebraically expressed in ternis of its digits.

Consider a number of three digits such as 435 ; its value is $4 \times 100+3 \times 10+5$. Similarly a number whose digits beginning from the left are x, y, z

$$
\begin{aligned}
& =x \text { hundreds }+y \text { tens }+z \text { units } \\
& =100 x+10 y+z
\end{aligned}
$$

Example. A certain number of two digits is three times the sum of its digits, and if 45 be alded to it the digits will be reversed ; find the number.

Let x be the digit in the tens' place, y the digit in the units' place; then the number will be represented by $10 x+y$, and the number formed by reversing the digits will be represented by $10 y+x$.

Hence we have the two equations
and
From (1),
from (2),

$$
\begin{align*}
10 x+y & =3(x+y) \tag{1}\\
10 x+y+45 & =10 y+x . \tag{2}
\end{align*}
$$

From these equations we obtain $x=2, y=7$.
Thus the number is 27 .

EXAMPLES XI.

1. Find two numbers whose sum is 54 , and whose difference is 12 .
2. The sum of two numbers is 97 , and their difference is 51 ; find the numbers.
3. One-fifth of the difference of two numbers is 3 , and one-third of their sum is 17 ; find the numbers.
4. One-sixth of the sum of two numbers is 14 , and half their difference is 13 ; find the numbers.
5. Four sheep and seven cows are worth £131, while three cows and five sheep are worth £66. What is the value of each animal?
6. A farmer bought 7 horses and 9 cows for $£ 330$. He could have bought 10 horses and 5 cows for the same money; find the price of each animal.
7. Twice A 's age exceeds three times B 's age by 2 years; if the sum of their ages is 61 years, how old are they?
8. Half A 's age exceeds a quarter of B 's age by 1 year, and three quarters of B 's age exceeds A 's by 11 years; find the age of each.
9. In eight hours C walks 3 miles more than D does in 6 hours, and in seven hours D walks 9 miles more than C does in six hours; how many miles does each walk per hour?
10. In 9 hours a coach travels one mile more than a train does in 2 hours, but in three hours the train travels 2 miles more than the coach does in 13 hours ; find the rate of each per hour.
11. A bill of $£ 3.8$ s. is paid with half-crowns and shillings, and three times the number of half-crowns exceeds twice the number of shillings by 8 ; how many of each are used?
12. A bill of $£ 1.18$ s. is paid with shillings and sixpences, and five times the number of sixpences exceeds seven times the number of shillings by 6 ; how many of each are used ?
13. Forty-six tons of goods are to be carried in carts and waggons and it is found that this will require 10 waggons and 14 carts, or else 13 waggons and 9 carts; how many tons can each waggon and each cart carry?
14. A sum of $£ 7.5$ s. is given to 17 boys and 15 girls; the same amount could have been given to 13 boys and 20 girls; find how much each boy and each girl receives.
15. A certain number of two digits is seven times the sum of the digits, and if 36 be taken from the number the digits will be reversed; find the number.
16. A certain number of two digits is four times the sum of the digits, and if 27 be added to the number the digits will be reversed; find the number.
17. A certain number between 10 and 100 is six times the sum of the digits, and the number exceeds the number formed by reversing the digits by 9 ; find the number.
18. The digits of a number between 10 and 100 are equal to each other, and the number exceeds 5 times the sum of the digits by 8 ; find the number.
19. A man has $£ 100$ in sovereigns, half-crowns, and shillings; the number of the coins is 852 , and their weight is 235 ounces. If a sovereign weighs $\frac{1}{4} \mathrm{oz}$., a half-crown $\frac{1}{2}$ oz., and a shilling $\frac{1}{5} \mathrm{oz}$., find how many of each kind of the coins he has.
20. A man has $£ 5$ worth of silver in half-crowns, shillings, and threepenny pieces. He has in all 70 coins. If he changed the threepenny pieces for halfpence, and half the shillings for sixpences, he would then have 180 coins. How many of each had he at first?
21. Divide $£ 100$ between 3 men, 5 women, 4 boys, and 3 girls, so that each man shall have as much as a woman and a girl, each woman as much as a boy and a girl, and each boy half as much as a man and a girl.
[Chapter X VII. will furnish further practice in Problems.]

MISCELLANEOUS EXAMPLES I.

The following Exercise consists of Miscellaneous Examples for revision on all the rules hitherto explained. The questions are selected from recent Examination Papers set by the Science and Art Department in Mathematics, Stage I.

1. If $x=2$ and $y=-\frac{1}{2}$, find the numerical values of

$$
3(x+y)-2(x-y) ; \quad x^{4} y^{6} ; \quad x^{3} y^{5} ; \quad \text { and } \frac{x^{3}-y^{3}}{x-y}
$$

2. Subtract $6 x+1-2(x+5 y)-\{2-(x+2 y-1)\}$
from

$$
2(2-y)-7 x-2\{1-3 y+6(y-x)\} .
$$

3. Find by how much $\left(x^{2}-3 x+1\right)^{2}$ is greater than

$$
x(x-1)(x-2)(x-3)
$$

4. Multiply together $x^{2}-3 x+2, x^{2}-2 x-3$, and $x^{2}+5 x+6$; and divide

$$
7 x^{3}-23 x^{2} y+7 x y^{2}=3 y^{3} \text { by } x-3 y .
$$

5. Given $x=\frac{1}{3}, y=-\frac{3}{2}, z=-4$; find the values of

$$
6 x y-4 y z+2 z x ; \quad \frac{9 x}{8 y^{2}}+\frac{24 y}{z^{2}}+\frac{z}{36 x^{2}} ; \quad \frac{3 x}{y+z}+\frac{z}{x+y} .
$$

6. Solve the equations:
(i.) $2 x+3 y=3 x+2 y=25$;
(ii.) $2 x=9-3 y$,

$$
5 y=24-6 x
$$

7. Divide $5 a^{4}-18 a^{3} x+5 a^{2} x^{2}-x^{4}$ by $x^{2}+3 a x-a^{2}$.
8. If $x=3$, and $4 y=-1$, find the numerical values of

$$
4\left(x-4 y^{3}\right) ; \quad(x-2 y)(x+3 y) ; \quad x^{3} y^{5}
$$

9. Subtract $3\left\{x+2 y-\frac{2}{3}(y-4)\right\}-4(3 x-y+2)$
from $3 x+2-[7 y-4 x-\{4(x-2)-3(2 y+1)\}]$.
10. Multiply $x^{4}+2 x^{3}-8 x-16$ by $x^{2}-2 x+4$; and divide

$$
x^{5}-5 x^{2} y^{3}+5 x y^{4}-y^{5} \text { by } x^{2}-2 x y+y^{2}
$$

11. Given $2 x=1,3 y=-4,2 z=7$; find the numerical values of the following expressions:

$$
\frac{x}{3 y}-\frac{y}{2 z} ; \quad x^{2} y^{3}+2 y^{2} z-3 y z^{2} ; \quad \frac{1}{x+y^{\prime}}+\frac{2}{y+z}
$$

12. Simplify

$$
(a-b)(b+c)(c+a)+(b-c)(c+a)(a+b)+(c-a)(a+b)(b+c)
$$

and find its value, when $a=1, b=3, c=-2$.
13. Multiply $2 x^{3}-3 x^{2} y+4 x y^{2}-5 y^{3}$ by $2 x^{2}+3 x y+4 y^{2}$; and find the value of the product when $x=-1, y=: 1$.
14. Simplify the expression

$$
\left(a c-b^{2}\right)\left(c e-d^{2}\right)+\left(a e-c^{2}\right)\left(b d-c^{2}\right)-(a d-b c)(b e-c a)
$$

15. Find the value of

$$
\frac{(a c-b c)(a+b)+b c(c-a)-c a(\alpha-b)}{(b-c)(c-a)(a+b)}
$$

when $a=1, b=3, c=4$.
16. Simplify $2 x^{2}-3\left(\frac{y^{2}}{2}-x^{2}\right)-\frac{1}{2}\left\{4 x^{2}-\frac{1}{2}\left(24 x^{2}+5 y^{2}\right)\right\}$, and divide the simplified expression by $x+\frac{y}{6}$.
17. Simplify the following expressions, and find their product:
and

$$
\begin{aligned}
& 5 x-(2 y-x-1)-2\{3 y-2(x+y)\} \\
& 3 x-4 y-2(x-2 y)+\frac{3}{2}\{2 x-1-3(x-y)\}
\end{aligned}
$$

18. Solve the equations:

$$
\begin{array}{rlrl}
\text { (i.) } \begin{aligned}
\frac{x}{3}+5 & =\frac{2 y}{3}, & \text { (ii.) } & \frac{x+y}{3}
\end{aligned}=x-7 \\
y-x & =\frac{x}{3} & & \frac{x}{3}
\end{array}=y+1 .
$$

CHAPTER XII.

Resolution into Factors.

74. Definition. When an algebraical expression is the product of two or more expressions each of these latter quantities is called a factor of it, and the determination of these quantities is called the resolution of the expression into its factors.

In this chapter we shall explain the principal rules by which the resolution of expressions into their component factors may be effected.
75. When each of the terms which compose an expression is divisible by a common factor, the expression may be simplified by dividing each term separately by this factor, and enclosing the quotient within brackets; the common factor being placed outside as a coefficient.

Example 1. The terms of the expression $3 a^{2}-6 a b$ have a common factor $3 a$;

$$
\therefore \quad 3 a^{2}-6 a b=3 a(a-2 b)
$$

Example 2. $\quad 5 a^{2} b x^{3}-15 a b x^{2}-20 b^{3} x^{2}=5 b x^{2}\left(a^{2} x-3 a-4 b^{2}\right)$.

EXAMPLES XII. a.

Resolve into factors :

1. $x^{2}+a x$.
2. $2 a^{2}-3 a$.
3. $a^{3}-a^{2}$.
4. $a^{3}-a^{2} b$.
5. $3 m^{2}-6 m n$.
6. $p^{2}+2 p^{2} q$.
7. $x^{5}-5 x^{2}$.
8. $y^{2}+x y$.
9. $5 a^{2}-25 a^{2} b$.
10. $12 x+48 x^{2} y$.
11. $10 c^{3}-25 c^{4} d$.
12. $27-162 x$.
13. $x^{2} y^{2} z^{2}+3 x y$.
14. $17 x^{2}-51 x$.
15. $2 a^{3}-a^{2}+a$.
16. $3 x^{3}+6 \alpha^{2} x^{2}-3 \alpha^{3} x$.
17. $7 p^{2}-7 p^{3}+14 p^{4}$.
18. $4 b^{5}+6 a^{2} b^{3}-2 b^{2}$.
19. $x^{3} y^{3}-x^{2} y^{2}+2 x y$.
20. $26 a^{3} b^{5}+39 a^{4} b^{2}$.
21. An expression may be resolved into factors if the terms can be arranged in groups which have a compound factor common.

Example 1. Resolve into factors $x^{2}-a x+b x-a b$.
Noticing that the first two terms contain a common factor x, and the last two terms a common factor b, we enclose the first two terms in one bracket, and the last two in another. Thus

$$
\begin{aligned}
x^{2}-a x+b x-a b & =\left(x^{2}-a x\right)+(b x-a b) \\
& =x(x-a)+b(x-a) \\
& =(x-a) \text { taken } x \text { times plus }(x-a) \text { taken } b \text { times } \\
& =(x-a) \text { taken }(x+b) \text { times } \\
& =(x-a)(x+b) .
\end{aligned}
$$

Example 2. Resolve into factors $12 a^{2}+b x^{2}-4 a b-3 a x^{2}$.

$$
\begin{aligned}
12 a^{2}+b x^{2}-4 a b-3 u x^{2} & =\left(12 \alpha^{2}-4 a b\right)-\left(3 a x^{2}-b x^{2}\right) \\
& =4 \alpha(3 a-b)-x^{2}(3 a-b) \\
& =(3 a-b)\left(4 a-x^{2}\right) .
\end{aligned}
$$

EXAMPLES XII. b.

Resolve into factors:

1. $x^{2}+x y+x z+y z$.
2. $a^{2}+2 a+a b+2 b$.
3. $2 a+2 x+a x+x^{2}$.
4. $a m-b m-a n+b m$.
5. $p q+q r-p r-r^{2}$.
6. $a x-2 a y-b x+2 b y$.
7. $a c^{2}+b+b c^{2}+a$.
8. $\alpha^{3}-\alpha^{2}+a-1$.
9. $a^{2} x-a b y+2 a x-2 b y$.
10. $7 x^{3}-4 x^{2}-21 x+12$.
11. $x^{2}-x z+x y-y z$.
12. $a^{2}+a c+4 a+4 c$.
13. $3 q-3 p+p q-p^{2}$.
14. $a b-b y-a y+y^{2}$.
15. $2 m x+n x+2 m y+n y$.
16. $2 a^{2}+3 a b-2 a c-3 b c$.
17. $a c^{2}-2 a-b c^{2}+2 b$.
18. $2 x^{3}+3+2 x+3 x^{2}$.
19. $a x y+b c x y-a z-b c z$.
20. $3 x^{3}-12 a x^{2}-2 \alpha^{2} x+8 \alpha^{3}$.

Factors of Trinomial Expressions.

77. Before proceeding to the next case of resolution into factors, we draw the students' attention to the way in which, in forming the product of two binomials, the coefficients of the different terms combine so as to give a trinomial result.

Thus

$$
\begin{align*}
& (x+5)(x+3)=x^{2}+8 x+15 . \tag{1}\\
& (x-5)(x-3)=x^{2}-8 x+15 . \tag{2}\\
& (x+5)(x-3)=x^{2}+2 x-15 . \tag{3}\\
& (x-5)(x+3)=x^{2}-2 x-15 . \tag{4}
\end{align*}
$$

We now propose to consider the converse problem : namely, the resolution of a trinomial expression, similar to those which occur on the right-hand side of the above identities, into its component binomial factors.

By examining the above results, we notice that :
(i.) The first term of both the factors is x.
(ii.) The product of the second terms of the two factors is equal to the third term of the trinomial ; e.g. in (2) we see that 15 is the product of -5 and -3 ; and in (3) we see that -15 is the product of +5 and -3 .
(iii.) The algebraic sum of the second terms of the two factors is equal to the coefficient of x in the trinomial ; e.g. in (4) the sum of -5 and +3 gives -2 , the coefficient of x in the trinomial.

The application of these laws will be easily understood from the following examples.

Example 1. Resolve into factors $x^{2}+11 x+24$.
The second terms of the factors must be such that their product is +24 , and their sum +11 . It is clear that they must be +8 and +3 .

$$
\therefore x^{2}+11 x+24=(x+8)(x+3) .
$$

Example 2. Resolve into factors $x^{2}-10 x+24$.
The second terms of the factors must be such that their product is +24 , and their sum -10 . Hence they must both be negative, and it is easy to see that they must be -6 and -4 .

$$
\therefore x^{2}-10 x+24=(x-6)(x-4) .
$$

Example 3. Resolve into factors $x^{2}-11 a x+10 a^{2}$.
The second terms of the factors must be such that their product is $+10 a^{2}$, and their sum $-11 a$. Hence they nust be $-10 a$ and $-a$.

$$
\therefore x^{2}-11 a x+10 a^{2}=(x-10 a)(x-a)
$$

EXAMPLES XII. c.

Resolve into factors:

1. $x^{2}+3 x+2$.
2. $y^{2}+5 y+6$.
3. $y^{2}+7 y+12$,
4. $a^{2}-3 a+2$.
5. $a^{2}-6 a+8$.
6. $b^{2}-5 b+6$.
7. $b^{2}+13 b+42$.
8. $b^{2}-13 b+40$.
9. $z^{2}-13 z+36$.
10. $x^{2}-15 x+56$.
11. $x^{2}-15 x+54$.
12. $z^{2}+15 z+44$.

Resolve into factors :
13. $b^{2}-12 b+36$.
14. $a^{2}+15 a+56$.
15. $a^{2}-12 a+27$.
16. $x^{2}+9 x+20$.
17. $x^{2}-10 x+9$.
18. $x^{2}-16 x+64$.
19. $y^{2}-23 y+102$.
20. $y^{2}-24 y+95$.
21. $y^{2}+54 y+729$.
22. $a^{2}+10 a b+21 b^{2}$.
23. $a^{2}+12 a b+11 b^{2}$.
24. $a^{2}-23 a b+132 b^{2}$.
25. $m^{4}+8 m^{2}+7$.
26. $m^{4}+9 m^{2} n^{2}+14 n^{4}$.
27. $x^{2} y^{2}-5 x y+6$.
28. $a^{2} b^{2}-15 a b+54$.
29. $13+14 y+y^{2}$.
30. $216-35 a+a^{2}$.
78. Next consider a case where the third term of the trinomial is negative.

Example 1. Resolve into factors $x^{2}+2 x-35$.
The second terms of the factors must be such that their product is -35 , and their algebraical sum +2 . Hence they must have opposite signs, and the greater of them must be positive in order to give its sign to their sum.

The required terms are therefore +7 and -5 .

$$
\therefore x^{2}+2 x-35=(x+7)(x-5) .
$$

Example 2. Resolve into factors $x^{2}-3 x-54$.
The second terms of the factors must be such that their product is -54 , and their algebraical sum -3. Hence they must have opposite signs, and the greater of them must be negative in order to give its sign to their sum.

The required terms are therefore -9 and +6 .

$$
\therefore x^{2}-3 x-54=(x-9)(x+6) .
$$

EXAMPLES XII. d.

Resolve into factors:

1. $x^{2}+x-2$.
2. $x^{2}-x-6$.
3. $x^{2}-x-20$.
4. $y^{2}+4 y-12$.
5. $y^{2}+4 y-21$.
6. $y^{2}-5 y-36$.
7. $a^{2}+8 a-33$.
8. $a^{2}-13 a-30$.
9. $a^{2}+a-132$.
10. $b^{2}-12 b-45$.
11. $b^{2}+14 b-51$.
12. $b^{2}+10 b-39$.
13. $m^{2}-m-56$.
14. $m^{2}-5 m-84$.
15. $m^{2}+m-56$.
16. $p^{2}-8 p-65$.
17. $p^{2}+3 p-108$.
18. $p^{2}+p-110$.
19. $x^{2}+2 x-48$.
20. $x^{2}-7 x-120$.
21. $x^{2}-x-132$.
22. $y^{4}+13 y^{2}-48$.
23. $y^{2}+4 x y-96 x^{2}$.
24. $y^{2}+7 x y-98 x^{2}$.
25. $a^{4}+a^{2} b^{2}-72 b^{4}$.
26. $a^{2}+a b-240 b^{2}$.
27. $a^{2} b^{2}-5 a b-14$.
28. $a^{2} b^{2}-2 a b c-35 c^{2}$.
29. $96-4 b-b^{2}$.
30. $72+b-b^{2}$.
31. We proceed now to the resolution into factors of trinomial expressions when the coefficient of the highest power is not unity.

By observing the manner in which, in ordinary multiplication, the terms of the product are formed, we may write down the following results:

$$
\begin{align*}
& (3 x+2)(x+4)=3 x^{2}+14 x+8 . \tag{1}\\
& (3 x-2)(x-4)=3 x^{2}-14 x+8 . \tag{2}\\
& (3 x+2)(x-4)=3 x^{2}-10 x-8 . \tag{3}\\
& (3 x-2)(x+4)=3 x^{2}+10 x-8 . \tag{4}
\end{align*}
$$

Here we see, as before, that
(i.) If the third term of the trinomial is positive, then the second terms of its factors have both the same sign, and this sign is the same as that of the middle term of the trinomial.
(ii.) If the third term of the trinomial is negative, then the second terms of its factors have opposite signs.

Now consider in detail the result $3 x^{2}-14 x+8=(3 x-2)(x-4)$.
The first term $3 x^{2}$ is the product of $3 x$ and x.
The third term $+8 . \ldots \ldots \ldots \ldots \ldots \ldots . .2$ and -4 .
The middle term $-14 x$ is the result of adding together the two products $3 x \times-4$ and $x \times-2$.

Again, consider the result $3 x^{2}-10 x-8=(3 x+2)(x-4)$.
The first term $3 x^{2}$ is the product of $3 x$ and x.
The third term $-8 \ldots \ldots \ldots \ldots \ldots \ldots . .+2$ and -4 .
The middle term $-10 x$ is the result of adding together the two products $3 x \times-4$ and $x \times 2$; and its sign is negative because the greater of these two products is negative.

The above observations lead us to the following method.
Example 1. Resolve into factors $7 x^{2}-19 x-6$.
Write down $\left(\begin{array}{ll}7 x & 3)(x\end{array}\right)$) for a first trial, noticing that 3 and 2 must have opposite signs. These factors give $7 x^{2}$ and -6 for the first and third terms. But since $7 \times 2-3 \times 1=11$, the combination fails to give the correct coefficient of the middle term.

Next try ($\left.\begin{array}{ll}x & 2\end{array}\right)\left(\begin{array}{ll}x & 3\end{array}\right)$.
Since $7 \times 3-2 \times 1=19$, these factors will be correct if we insert the signs so that the negative shall predominate.

Thus

$$
7 x^{2}-19 x-6=(7 x+2)(x-3)
$$

[Verify by mental multiplication.]
E.C.

Example 2. Resolve into factors $14 x^{2}+29 x-15 \ldots \ldots(1)$,

$$
\begin{equation*}
14 x^{2}-29 x-15 \tag{2}
\end{equation*}
$$

In each case we may write down $\left(\begin{array}{ll}7 x & 3\end{array}\right)\left(\begin{array}{ll}2 x & 5\end{array}\right)$ as a first trial, noticing that 3 and 5 must have opposite signs.

And since $7 \times 5-3 \times 2=29$, we have only now to insert the proper signs in each factor.

In (1) the positive sign must predominate,
in (2) the negative.
Therefore

$$
\begin{aligned}
& 14 x^{2}+29 x-15=(7 x-3)(2 x+5) \\
& 14 x^{2}-29 x-15=(7 x+3)(2 x-5)
\end{aligned}
$$

Example 3. Resolve into factors $5 x^{2}+17 x+6$

$$
\begin{equation*}
5 x^{2}-17 x+6 \tag{1}
\end{equation*}
$$

In (1) we notice that the factors which give 6 are both positive.
In (2) .negative.
And therefore for (1) we may write $(5 x+\quad)(x+\quad)$.

$$
(2) \ldots \ldots \ldots \ldots \ldots \ldots(5 x-\quad)(x-\quad)
$$

And, since $5 \times 3+1 \times 2=17$, we see that

$$
\begin{aligned}
& 5 x^{2}+17 x+6=(5 x+2)(x+3) \\
& 5 x^{2}-17 x+6=(5 x-2)(x-3)
\end{aligned}
$$

EXAMPLES XII. e.

Resolve into factors :

1. $2 a^{2}+3 a+1$.
2. $3 a^{2}+4 a+1$.
3. $4 a^{2}+5 a+1$.
4. $2 a^{2}+5 a+2$.
5. $3 a^{2}+10 a+3$.
6. $2 a^{2}+7 a+3$.
7. $5 a^{2}+7 a+2$.
8. $2 a^{2}+9 a+10$.
9. $2 a^{2}+7 a+6$.
10. $2 x^{2}+9 x+4$.
11. $2 x^{2}+5 x-3$.
12. $3 x^{2}+5 x-2$.
13. $3 y^{2}+y-2$.
14. $3 y^{2}-7 y-6$.
15. $2 y^{2}+9 y-5$.
16. $2 b^{2}-5 b-3$.
17. $6 b^{2}+7 b-3$.
18. $2 b^{2}+b-1$.
19. $4 m^{2}+5 m-6$.
20. $4 m^{2}-4 m-3$.
21. $6 m^{2}-7 m-3$.
22. $4 x^{2}-8 x y-5 y^{2}$.
23. $6 x^{2}-7 x y+2 y^{2}$.
24. $6 x^{2}-13 x y+2 y^{2}$.
25. $12 \alpha^{2}-17 a b+6 b^{2}$.
26. $6 a^{2}-5 a b-6 b^{2}$.
27. $6 a^{2}+35 a b-6 b^{2}$.
28. $2--3 y-2 y^{2}$.
29. $3+23 y-8 y^{2}$.
30. $8+18 y-5 y^{2}$.
31. $4+17 x-15 x^{2}$
32. $6-13 a+6 a^{2}$.
33. $28-31 b-5 b^{2}$.

The Difference of Two Squares.

80. By multiplying $a+b$ by $a-b$ we obtain the identity

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

from which we see that the difference of the squares of any two quantities is equal to the product of the sum and the difference of the two quantities.

Thus any expression which is the difference of two squares may at once be resolved into factors.

Example. Resolve into factors $25 x^{2}-16 y^{2}$.

$$
\begin{aligned}
25 x^{2}-16 y^{2} & =(5 x)^{2}-(4 y)^{2} \\
& =(5 x+4 y)(5 x-4 y) .
\end{aligned}
$$

The intermediate step may usually be omitted.
Example.

$$
1-49 c^{6}=\left(1+7 c^{3}\right)\left(1-7 c^{3}\right)
$$

The difference of the squares of two numerical quantities is sometimes conveniently found by the aid of the formula

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Example. $\quad(329)^{2} \quad(171)^{2}=(329+171)(329-171)$

$$
\begin{aligned}
& =500 \times 158 \\
& =79000 .
\end{aligned}
$$

EXAMPLES XII. f.

Resolve into factors :

1. $a^{2}-9$.
2. $a^{2}-49$.
3. $a^{2}-81$.
4. $x^{2}-25$.
5. $64-x^{2}$.
6. $81-4 x^{2}$.
7. $4 y^{2}-1$.
8. $y^{2}-9 a^{2}$.
9. $4 y^{2}-25$.
10. $9 y^{2}-49 x^{2}$.
11. $4 m^{2}-81$.
12. $36 a^{2}-1$.
13. $9 a^{2}-25 b^{2}$.
14. $121-16 y^{2}$.
15. $25-c^{4}$.
16. $49 a^{4}-100 b^{2}$.
17. $4 p^{2} q^{2}-81$.
18. $a^{4} b^{4} c^{2}-9$.
19. $x^{6}-4 a^{4}$.
20. $x^{4}-25 z^{4}$.
21. $a^{10}-p^{2} q^{4}$.
22. $16 a^{16}-9 b^{6}$.
23. $25 x^{12}-4$.
24. $a^{6} b^{8} c^{4}-9 x^{2}$.

Find by factors the value of
25. $(39)^{2}-(31)^{2}$.
26. $(51)^{2}-(49)^{2}$.
27. $(1001)^{2}-1$.
28. $(82)^{2}-(18)^{2}$.
29. $(275)^{2}-(225)^{2}$.
30. $(936)^{2}-(64)^{2}$.

The Sum or Difference of Two Cubes.

81. If we divide $a^{3}+b^{3}$ by $a+b$ the quotient is $a^{2}-a b+b^{2}$: and if we divide $a^{3}-b^{3}$ by $a-b$ the quotient is $a^{2}+a b+b^{2}$.

We have therefore the following identities :

$$
\begin{aligned}
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) ; \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) .
\end{aligned}
$$

These results are very important, and enable us to resolve into factors any expression which can be written as the sum or the difference of two cubes.

Example 1.

$$
\begin{aligned}
8 x^{3}-27 y^{3} & =(2 x)^{3}-(3 y)^{3} \\
& =(2 x-3 y)\left(4 x^{2}+6 x y+9 y^{2}\right) .
\end{aligned}
$$

Note. The middle term $6 x y$ is the product of $2 x$ and $3 y$.
Example 2.

$$
\begin{aligned}
64 a^{3}+1 & =(4 a)^{3}+(1)^{3} \\
& =(4 a+1)\left(16 a^{2}-4 a+1\right) .
\end{aligned}
$$

We may usually omit the intermediate step and write down the factors at once.

Examples. $\quad 343 a^{6}-27 x^{3}=\left(7 a^{2}-3 x\right)\left(49 a^{4}+21 a^{2} x+9 x^{2}\right)$.

$$
8 x^{9}+729=\left(2 x^{3}+9\right)\left(4 x^{6}-18 x^{3}+81\right) .
$$

EXAMPLES XII. g.

Resolve into factors :

1. $a^{3}-b^{3}$.
2. $a^{3}+b^{3}$.
3. $1+x^{3}$.
4. $1-y^{3}$.
5. $8 x^{3}+1$.
6. $x^{3}-8 z^{3}$.
7. $a^{3}+27 b^{3}$.
8. $x^{3} y^{3}-1$.
9. $\mathrm{l}-8 \alpha^{3}$.
10. $b^{3}-8$.
11. $27+x^{3}$.
12. $64-p^{3}$.
13. $125 a^{3}+1$.
14. $216-b^{3}$.
15. $x^{3} y^{3}+343$.
16. $\quad 1000 x^{3}+1$.
17. $512 \alpha^{3}-1$.
18. $a^{3} b^{3} c^{3}-27$.
19. $8 x^{3}-343$.
20. $x^{3}+216 y^{3}$.
21. $x^{6}-27 z^{3}$.
22. $m^{3}-1000 n^{6}$.
23. $a^{3}-729 b^{3}$.
24. $125 a^{6}+512 b^{3}$.

Harder Cases of Resolution into Factors.

82. We shall now give some harder applications of the foregoing rules, followed by a miscellaneous exercise in which all the processes of this chapter will be illustrated.

Example 1. Resolve into factors $(a+2 b)^{2}-16 x^{2}$.
This expression, being the difference between two squares, is resolved into factors by the rule of Art. 80.

$$
\therefore(a+2 b)^{2}-16 x^{2}=(a+2 b+4 x)(a+2 b-4 x) .
$$

If the factors contain like terms they should be collected so as to give the result in its simplest form.

Example 2. $\quad(3 x+7 y)^{2}-(2 x-3 y)^{2}$

$$
\begin{aligned}
& =\{(3 x+7 y)+(2 x-3 y)\}\{(3 x+7 y)-(2 x-3 y)\} \\
& =(3 x+7 y+2 x-3 y)(3 x+7 y-2 x+3 y) \\
& =(5 x+4 y)(x+10 y) .
\end{aligned}
$$

83. By suitably grouping together the terms, compound expressions can often be expressed as the difference of two squares, and so be resolved into factors.

Example 1. Resolve into factors $9 a^{2}-c^{2}+4 c x-4 x^{2}$.

$$
\begin{aligned}
9 a^{2}-c^{2}+4 c x-4 x^{2} & =9 a^{2}-\left(c^{2}-4 c x+4 x^{2}\right) \\
& =(3 a)^{2}-(c-2 x)^{2} \\
& =(3 a+c-2 x)(3 a-c+2 x) .
\end{aligned}
$$

Example 2. Resolve into factors $2 b d-a^{2}-c^{2}+b^{2}+d^{2}+2 a c$.
Here the terms $2 b d$ and $2 a c$ suggest the proper preliminary arrangement of the expression. Thus

$$
\begin{aligned}
2 b d-a^{2}-c^{2}+b^{2}+d^{2}+2 a c & =b^{2}+2 b d+d^{2}-a^{2}+2 a c-c^{2} \\
& =b^{2}+2 b d+d^{2}-\left(a^{2}-2 a c+c^{2}\right) \\
& =(b+d)^{2}-(a-c)^{2} \\
& =(b+d+a-c)(b+d-a+c) .
\end{aligned}
$$

84. Sometimes an expression may be resolved into more than two factors.

Example 1. Resolve into factors, $32 a^{5} b-162 a b^{5}$.

$$
\begin{aligned}
32 a^{5} b-162 a b^{5} & =2 a b\left(16 a^{4}-81 b^{4}\right) \\
& =2 a b\left(4 a^{2}+9 b^{2}\right)\left(4 a^{2}-9 b^{2}\right) \\
& =2 a b\left(4 a^{2}+9 b^{2}\right)(2 a+3 b)(2 a-3 b) .
\end{aligned}
$$

Example 2. Resolve into factors $x^{6}-y^{6}$.

$$
\begin{aligned}
x^{6}-y^{6} & =\left(x^{3}+y^{3}\right)\left(x^{3}-y^{3}\right) \\
& =(x+y)\left(x^{2}-x y+y^{2}\right)(x-y)\left(x^{2}+x y+y^{2}\right) .
\end{aligned}
$$

Note. When an expression can be arranged either as the difference of two squares, or as the difference of two cubes, it will be found simplest to first use the rule for the difference of two squares.
85. The following case is important.

Example. Resolve into factors $x^{4}+x^{2} y^{2}+y^{4}$.

$$
\begin{aligned}
x^{4}+x^{2} y^{2}+y^{4} & =\left(x^{4}+2 x^{2} y^{2}+y^{4}\right)-x^{2} y^{2} \\
1 & =\left(x^{2}+y^{2}\right)^{2}-(x y)^{2} \\
& =\left(x^{2}+y^{2}+x y\right)\left(x^{2}+y^{2}-x y\right) \\
& =\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right) .
\end{aligned}
$$

86. The student should verify by actual multiplication the following identity. [See Art. 41, Ex. 3.]

$$
a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-b c-c a-a b\right)
$$

Similarly

$$
\begin{aligned}
x^{3}-8 y^{3}+125 z^{3} & +30 x y z=x^{3}+(-2 y)^{3}+(5 z)^{3}-3 x(-2 y)(5 z) \\
& =(x-2 y+5 z)\left(x^{2}+4 y^{2}+25 z^{2}+10 y z-5 z x+2 x y\right) .
\end{aligned}
$$

EXAMPLES XII.

Resolve into two or more factors:

1. $(x+y)^{2}-z^{2}$.
2. $(x-y)^{2}-z^{2}$.
3. $(a+2 b)^{2}-c^{2}$.
4. $(a+3 c)^{2}-1$.
5. $(2 x-1)^{2}-\alpha^{2}$.
6. $a^{2}-(b+c)^{2}$.
7. $4 a^{2}-(b-1)^{2}$.
8. $9-(a+x)^{2}$.
9. $(2 a-3 b)^{2}-c^{2}$.
10. $(18 x+y)^{2}-(17 x-y)^{2}$.
11. $(6 a+3)^{2}-(5 a-4)^{2}$.
12. $4 \alpha^{2}-(2 \alpha-3 b)^{2}$.
13. $x^{2}-(2 b-3 c)^{2}$.
14. $(x+y)^{2}-(m-n)^{2}$.
15. $(3 x+2 y)^{2}-(2 x-3 y)^{2}$.
16. $a^{2}-2 a x+x^{2}-4 b^{2}$.
17. $x^{2}+a^{2}+2 a x-z^{2}$.
18. $1-a^{2}-2 a b-b^{2}$.
19. $12 x y+25-4 x^{2}-9 y^{2}$.
20. $c^{2}-a^{2}-b^{2}+2 a b$.
21. $x^{2}-2 x+1-m^{2}-4 m n-4 n^{2}$.
22. $x^{4}+y^{4}-z^{4}-a^{4}+2 x^{2} y^{2}-2 a^{2} z^{2}$.
23. $(m+n+p)^{2}-(m-n+p)^{2}$.
24. $a^{4}+a^{2}+1$.
25. $a^{4} b^{4}-16$.
26. $256 x^{4}-81 y^{4}$.
27. $16 a^{4} b^{2}-b^{6}$.
28. $a^{2} b^{5}-81 \dot{\alpha}^{2} b$.
29. $64 m^{7}-m n^{6}$.
30. $x^{4}-x^{4} y^{4}$.
31. $216 b^{6}+a^{3} b^{3}$.
32. $400 a^{2} x-x^{3}$.
33. $1-729 y^{6}$.
34. $6 x^{3} y^{2}+15 x^{2} y^{2}-36 x y^{2}$.
35. $2 m^{8} n^{4}-7 m^{4} n^{6}-4 n^{8}$.
36. $98 x^{4}-7 x^{2} y^{2}-y^{4}$.
37. $a^{2} b^{2}-a^{2}-b^{2} \dot{\top} 1$.
38. $x^{3}-2 x^{2}-x+2$.
39. $a^{2} x^{3}-8 a^{2} y^{3}-4 b^{2} x^{3}+32 b^{2} y^{3}$.
40. $2 p-3 q+4 p^{2}-9 q^{2}$.
41. $24 a^{2} b^{2}-30 a b^{3}-36 b^{4}$.
42. $x^{4}+4 x^{2}+16$.
43. $a^{4}-18 a^{2} b^{2}+b^{4}$.
44. $(a+b)^{4}-c^{4}$.
45. $a^{2}-b^{2}+c(a-b)$.
46. $a^{2}-9 b^{2}+(a-3 b)^{2}$.
47. $a^{3}+b^{3}+8 c^{3}-6 a b c$.
48. $a^{3}+8 c^{3}+1-6 a c$.
49. $(a+b)^{3}+1$.
50. $119+10 m-m^{2}$.
51. $240 x^{2}+x^{6} y^{4}-x^{10} y^{8}$.
52. $x^{4}+y^{4}-7 x^{2} y^{2}$.
53. $x^{8}+x^{4}+1$.
54. $(c+d)^{3}+(c-d)^{3}$.
55. $(a+b)^{2}-a c-b c$.
56. $4(x-y)^{3}-25(x-y)$.
57. $a^{3}-27 b^{3}+c^{3}+9 a b c$.
58. $8 a^{3}+27 b^{3}+c^{3}-18 a b c$.

Converse Use of Factors.

87. The actual processes of multiplication and division can often be partially or wholly avoided by a skilful use of factors.

For example, the formula for resolving into factors the difference of two squares enables us to write down at once the product of the sum and the difference of two quantities.

Example 1. Multiply $2 a+3 b-c$ by $2 a-3 b+c$.
These expressions may be arranged thus:

$$
2 a+(3 b-c) \text { and } 2 a-(3 b-c) .
$$

Hence the product $=\{2 a+(3 b-c)\}\{2 a-(3 b-c)\}$.

$$
\begin{aligned}
& =(2 a)^{2}-(3 b-c)^{2} . \\
& =4 a^{2}-\left(9 b^{2}-6 b c+c^{2}\right) \\
& =4 a^{2}-9 b^{2}+6 b c-c^{2} .
\end{aligned}
$$

Example 2. Find the product of

$$
x+2, x-2, x^{2}-2 x+4, x^{2}+2 x+4
$$

Taking the first factor with the third, and the second with the fourth,
the product $=\left\{(x+2)\left(x^{2}-2 x+4\right)\right\}\left\{(x-2)\left(x^{2}+2 x+4\right)\right\}$

$$
\begin{aligned}
& =\left(x^{3}+8\right)\left(x^{3}-8\right) \\
& =x^{6}-64 .
\end{aligned}
$$

EXAMPLES XII. k.

Employ factors to obtain the product of

1. $a-b+c, a-b-c$.
2. $2 x-y+z, 2 x+y+z$.
3. $1+2 x-x^{2}, 1-2 x-x^{2}$.
4. $c^{2}+3 c+2, c^{2}-3 c-2$.
5. $a+b-c+d, a+b+c-d$.
6. $p-q+x-y, p-q-x+y$.

Find, by factors, the continued product of
7. $(a-b)^{2},(a+b)^{2},\left(a^{2}+b^{2}\right)^{2}$.
8. $(1-x)^{3},(1+x)^{3},\left(1+x^{2}\right)^{3}$.
9. $a^{2}-4 a+3, a^{2}-a-2, a^{2}+5 a+6$.
10. $3-y, 3+y, 9-3 y+y^{2}, 9+3 y+y^{2}$.
11. $\mathbf{l}+c+c^{2}, 1-c+c^{2}, 1-c^{2}+c^{4}$.
12. Divide $a^{3}(\alpha+2)\left(a^{2}-\alpha-56\right)$ by $a^{2}+7 a$, employing factors.
13. Divide $3 x^{2}(x+4)\left(x^{2}-9\right)$ by $x^{2}+x-12$.
14. Divide the product of $2 a^{2}+11 a-21$ and $3 a^{2}-20 a-7$ by $a^{2}-49$.
15. Divide $x^{6}-7 x^{3}-8$ by $(x+1)\left(x^{2}+2 x+4\right)$.

CHAPTER XIII.

Highest Common Factor.

88. Definition. The highest common factor of two or more algebraical expressions is the expression of highest dimensions (Art. 22) which divides each of them without remainder.

The abbreviation H.C.F. is sometimes used for highest common factor.

Note. The term greatest common measure is sometimes used instead of highest common factor; but this usage is incorrect, for in Algebra our object is to find the factor of highest dimensions which is common to two or more expressions, and we are not concerned with the numerical values of the expressions or their divisors. The term greatest common measure ought to be confined solely to arithmetical quantities, for it can easily be shewn by trial that the algebraical highest common factor is not always the greatest common measure. [See Hall and Knight's Elementary Algebra, Art. 145.]
89. In the case of simple expressions the highest common factor can be written down by inspection.

Example. The highest common factor of $a^{3} b^{4}, a^{2} b^{5} c^{2}, a^{4} b^{7} c$ is $a^{2} b^{4}$; for a^{2} is the highest power of a that will divide the given expressions, and b^{4} is the highest power of b that will divide them; while c is not a common factor.
90. If the expressions have numerical coefficients, find by Arithmetic their greatest common measure, and prefix it as a coefficient to the algebraical highest common factor.

Example. The highest common factor of $21 a^{4} x^{3} y, 35 a^{2} x^{4} y, 28 a^{3} x y$ is $7 a^{2} x y$; for it consists of the product of
(1) The greatest common measure of 35,28 , and 21 ;
(2) The highest power of each letter which divides every one of the given expressions.
91. An analogous method will enable us readily to find the highest common factor of compound expressions which are given as the product of factors, or which can be easily resolved into factors.

Example 1. Find the highest common factor of

$$
3 a^{2}+9 a b, \quad a^{3}-9 a b^{2}, \quad a^{3}+6 a^{2} b+9 a b^{2} .
$$

Resolving each expression into its factors, we have

$$
\begin{aligned}
3 a^{2}+9 a b & =3 a(a+3 b), \\
a^{3}-9 a b^{2} & =a(a+3 b)(a-3 b), \\
a^{3}+6 a^{2} b+9 a b^{2} & =a(a+3 b)(a+3 b) ;
\end{aligned}
$$

therefore the H.C.F. is $a(a+3 b)$.
Example 2. Find the H.C.F. of $x(a-x)^{2}, a(a-x)^{3}, 2 a x(a-x)^{5}$.
The H.C.F. is $(a-x)^{2}$, for it contains the highest power of the compound factor $a-x$, which is common to the given expressions.

Example 3. Find the highest common factor of

$$
a x^{2}+2 a^{2} x+a^{3}, \quad 2 a x^{2}-4 a^{2} x-6 a^{3}, \quad 3\left(a x+a^{2}\right)^{2}
$$

Here

$$
\begin{aligned}
& a x^{2}+2 a^{2} x+a^{3}=a\left(x^{2}+2 a x+a^{2}\right)=a(x+a)^{2}, \\
& 2 a x^{2}-4 a^{2} x-6 \alpha^{3}=2 a\left(x^{2}-2 a x-3 a^{2}\right)=2 a(x+\alpha)(x-3 a), \\
& 3\left(a x+a^{2}\right)^{2}=3\{a(x+a)\}^{2}=3 a^{2}(x+a)^{2} \text {; } \\
& \therefore \text { H.C.F. }=a(x+a) \text {. }
\end{aligned}
$$

EXAMPLES XIII. a.

Find the highest common factor of

1. $a^{2} x^{3} y, b^{3} x y^{4}, c x^{4} y^{2}$.
2. $15 x^{2} y, 60 x^{5} y^{2} z^{3}, 25 x^{3} z^{4}$.
3. $77 a^{3} b^{5} c^{2}, 33 a^{2} b^{3} c^{5}, a b^{2} c^{6}$.
4. $3(a-b)^{3}, a^{2}-2 a b+b^{2}$.
5. $9 a^{2}-4 b^{2}, 6 a^{2}+4 a b$.
6. $a^{2} x^{3}(a-x)^{3}, 2 \alpha^{2} x^{2}(a-x)^{2}$.
7. $x^{2} y^{2}-y^{4}, x y^{2}+y^{3}, x y-y^{2}$.
8. $\left(a^{2}-a x\right)^{2},\left(a x-x^{2}\right)^{3}$.
9. $x^{3}-x^{2}-42 x, x^{4}-49 x^{2}$.
10. $2 x^{2}-9 x+4,3 x^{2}-7 x-20$.
11. $3 a^{4} x^{3}-8 a^{3} x^{3}+4 a^{2} x^{3}, 3 a^{5} x^{2}-11 a^{4} x^{2}+6 a^{3} x^{2}$,

$$
3 a^{4} x^{3}+16 a^{3} x^{3}-12 a^{2} x^{3} .
$$

92. We shall now work out examples to illustrate the process of finding the highest common factor of expressions which cannot be readily resolved into factors. The method is analogous to that used in Arithmetic for finding the greatest common measure of two numbers. For a proof of the rule the reader may consult Hall and Knight's Elementary Algebra, Arts. 146, 147; but we may here conveniently enunciate two principles, which the student should bear in mind in reading the examples which follow.
I. If an expression contain a certain factor, any multiple of the expression is divisible by that factor.
II. If two expressions have a common factor, it will divide their sum and their difference; and also the sum and the difference of any multiples of them.

Example. Find the highest common factor of

Therefore the H.C.F. is $x-3$.
Explanation. First arrange the given expressions according to descending or ascending powers of x. The expressions so arranged having their first terms of the same order, we take for divisor that whose highest power has the smaller coefficient. Arrange the work in parallel columns as above. When the first remainder $4 x^{2}-5 x-21$ is made the divisor we put the quotient x to the left of the dividend. Again, when the second remainder $2 x^{2}-3 x-9$ is in turn made the divisor, the quotient 2 is placed to the right; and so on. As in Arithmetic, the last divisor $x-3$ is the highest common factor required.
93. This method is only useful to determine the compound factor of the highest common factor. Simple factors of the given expressions must be first removed from them, and the highest common factor of these, if any, must be reserved and multiplied into the compound factor given by the rule.

Example. Find the highest common factor of

$$
24 x^{4}-2 x^{3}-60 x^{2}-32 x \text { and } 18 x^{4}-6 x^{3}-39 x^{2}-18 x .
$$

We have $24 x^{4}-2 x^{3}-60 x^{2}-32 x=2 x\left(12 x^{3}-x^{2}-30 x-16\right)$,
and

$$
18 x^{4}-6 x^{3}-39 x^{2}-18 x=3 x\left(6 x^{3}-2 x^{2}-13 x-6\right) .
$$

Also $2 x$ and $3 x$ have the common factor x. Removing the simple factors $2 x$ and $3 x$, and reserving their common factor x, we continue as in Art. 92.
\(2 x\left|\begin{array}{r|r|r}6 x^{3}-2 x^{2}-13 x-6

6 x^{3}-8 x^{2}-8 x

6 x^{2}-5 x-6\end{array}\right|\)| $12 x^{3}-x^{2}-30 x-16$ |
| ---: |
| $\frac{12 x^{3}-4 x^{2}-26 x-12}{3 x^{2}-4 x-4}$ |\(\left|\begin{array}{rl}2

\frac{6 x^{2}-8 x-8}{3 x+2}\end{array} \quad $$
\begin{array}{rl}3 x^{2}+2 x \\
-6 x-4 \\
-6 x-4\end{array}
$$\right|-2\)

Therefore the H.C.F. is $x(3 x+2)$.
94. So far the process of Arithmetic has been found exactly applicable to the algebraical expressions we have considered. But in many cases certain modifications of the arithmetical method will be found necessary. These will be more clearly understood if it is remembered that, at every stage of the work, the remainder must contain as a factor of itself the highest common factor we are seeking. [See Art. 92, I. \& II.]

Example 1. Find the highest common factor of

$$
\begin{aligned}
& 3 x^{3}-13 x^{2}+23 x-21 \text { and } 6 x^{3}+x^{2}-44 x+21 . \\
& 3 x^{3}-13 x^{2}+23 x-21\left|\begin{array}{l}
6 x^{3}+x^{2}-44 x+21 \\
\frac{6 x^{3}-26 x^{2}+46 x-42}{27 x^{2}-90 x+63}
\end{array}\right|^{2}
\end{aligned}
$$

Here on making $27 x^{2}-90 x+63$ a divisor, we find that it is not contained in $3 x^{3}-13 x^{2}+23 x-21$ with an integral quotient. But noticing that $27 x^{2}-90 x+63$ may be written in the form $9\left(3 x^{2}-10 x+7\right)$, and also bearing in mind that every remainder in the course of the work contains the H.C.F., we conclude that the H.C.F. we are seeking is contained in $9\left(3 x^{2}-10 x+7\right)$. But the two original expressions have no simple factors, therefore their H.C.F. can have none. We may therefore reject the factor 9 and go on with divisor $3 x^{2}-10 x+7$.

Resuming the work, we have

$$
\begin{array}{r|r|r|}
x & \begin{array}{c}
3 x^{3}-13 x^{2}+23 x-21 \\
-1
\end{array} \left\lvert\, \begin{array}{r}
3 x^{2}-10 x+7 \\
3 x^{3}-10 x^{2}+7 x \\
-3 x^{2}+16 x-21
\end{array}\right. & \frac{3 x^{2}-7 x}{-3 x+7} \\
\frac{-3 x^{2}+10 x-7}{2) 6 x-14} & -1 \\
& -3 x+7 \\
& -1
\end{array}
$$

Therefore the highest common factor is $3 x-7$.
The factor 2 has been removed on the same grounds as the factor 9 above.
95. Sometimes the process is more convenient when the expressions are arranged in ascending powers.

Example. Find the highest common factor of
and

$$
\begin{align*}
& 3-4 a-16 a^{2}-9 a^{3} \tag{1}\\
& 4-7 a-19 a^{2}-8 a^{3} \tag{2}
\end{align*}
$$

As the expressions stand we cannot begin to divide one by the other without using a fractional quotient. The difficulty may be obviated by introducing a suitable factor, just as in the last case we found it useful to remove a factor when we could no longer proceed with the division in the ordinary way. The given expressions have no common simple factor, hence their H.C.F. cannot be affected if we multiply either of them by any simple factor.

Multiply (1) by 4 and use (2) as a divisor :

$$
\left.4\left|\begin{array}{c|r}
4-7 a-19 a^{2}-8 a^{3} \\
\frac{5}{20-35 a-95 a^{2}-40 a^{3}} \\
\frac{20-28 a-48 a^{2}}{-7 a-47 a^{2}-40 a^{3}} \\
\frac{-5}{35 a+235 a^{2}+200 a^{3}} \\
\frac{35 a-16 a-64 a^{2}-36 a^{3}}{284 a^{2} \mid 284 a^{2}+84 a^{3}} \\
1+a
\end{array}\right| \begin{array}{r}
12-21 a-57 a^{2}-24 a^{3} \\
\frac{12-7 a^{2}-12 a^{3}}{5-7 a-12 a^{2}}
\end{array} \right\rvert\, 5
$$

Therefore the H.C.F. is $1+a$.
After the first division the factor a is removed as explained in Art. 94 ; then the factor 5 is introduced because the first term of $4-7 a-19 \alpha^{2}-8 \alpha^{3}$ is not divisible by the first term of $5-7 a-12 \alpha^{2}$. At the next stage a factor -5 is introduced, and finally the factor $284 a^{2}$ is removed.
96. From the last two examples it appears that we may multiply or divide either of the given expressions, or any of the remainders which occur in the course of the work, by any factor which does not divide both of the given expressions.

EXAMPLES XIII. b.

Find the highest common factor of

1. $2 x^{3}+3 x^{2}+x+6,2 x^{3}+x^{2}+2 x+3$.
2. $2 y^{3}-9 y^{2}+9 y-7, y^{3}-5 y^{2}+5 y-4$.
3. $2 x^{3}+8 x^{2}-5 x-20,6 x^{3}-4 x^{2}-15 x+10$.
4. $a^{3}+3 a^{2}-16 a+12, a^{3}+a^{2}-10 a+8$.
5. $6 x^{3}-x^{2}-7 x-2,2 x^{3}-7 x^{2}+x+6$.
6. $q^{3}-3 q+2, q^{3}-5 q^{2}+7 q-3$.
7. $a^{4}+a^{3}-2 a^{2}+a-3,5 a^{3}+3 a^{2}-17 a+6$.
8. $3 y^{4}-3 y^{3}-15 y^{2}-9 y, 4 y^{5}-16 y^{4}-44 y^{3}-24 y^{2}$.
9. $15 x^{4}-15 x^{3}+10 x^{2}-10 x, 30 x^{5}+120 x^{4}+20 x^{3}+80 x^{2}$.
10. $2 m^{4}+7 m^{3}+10 m^{2}+35 m, 4 m^{4}+14 m^{3}-4 m^{2}-6 m+28$.
11. $3 x^{4}-9 x^{3}+12 x^{2}-12 x, 6 x^{3}-6 x^{2}-15 x+6$.
12. $2 \alpha^{5}-4 a^{4}-6 a, a^{5}+\alpha^{4}-3 \alpha^{3}-3 \alpha^{2}$.
13. $x^{3}+4 x^{2}-2 x-15, x^{3}-21 x-36$.
14. $9 \alpha^{4}+2 a^{2} x^{2}+x^{4}, 3 a^{4}-8 a^{3} x+5 a^{2} x^{2}-2 a x^{3}$.
15. $2-3 a+5 a^{2}-2 a^{3}, 2-5 a+8 \alpha^{2}-3 \alpha^{3}$.
16. $3 x^{2}-5 x^{3}-15 x^{4}-4 x^{5}, 6 x-7 x^{2}-29 x^{3}-12 x^{4}$.
17. $6-8 a-32 a^{2}-18 a^{3}, 20-35 a-95 a^{2}-40 a^{3}$.
18. $9 x^{2}-15 x^{3}-45 x^{4}-12 x^{5}, 42 x-49 x^{2}-203 x^{3}-84 x^{4}$.
19. $3 x^{5}-5 x^{3}+2,2 x^{5}-5 x^{2}+3$.
20. $4 x^{5}-6 x^{3}-28 x, 6 x^{4}+10 x^{3}-17 x^{2}-35 x-14$.

CHAPTER XIV.

Lowest Common Multiple.

97. Definition. The lowest common multiple of two or more algebraical expressions is the expression of lowest dimensions which is divisible by each of them without remainder.

The abbreviation L.C.M. is sometimes used instead of the words lowest common multiple.
98. In the case of simple expressions, the lowest common multiple can be written down by inspection, as follows :

Example. The lowest common multiple of $21 a^{4} x^{3} y, 35 a^{2} x^{4} y$, and $28 a^{3} x y$ is $420 a^{4} x^{4} y$; for it consists of the product of
(1) the lowest common multiple of 21,35 , and 28 ;
(2) the lowest power of each letter which is divisible by every power of that letter occurring in the given expressions.
99. The lowest common multiple of compound expressions which are given as the product of factors, or which can be easily resolved into factors, can be found in a similar way.

Example 1. The lowest common multiple of $6 x^{2}(\alpha-x)^{2}, 8 a^{3}(a-x)^{3}$, and $12 a x(a-x)^{5}$ is $24 a^{3} x^{2}(a-x)^{5}$;
for it consists of the product of
(1) the L.C.M. of the numerical coefficients ;
(2) the lowest power of each factor which is divisible by every power of that factor occurring in the given expressions.

Example 2. Find the lowest common multiple of

$$
\left(y z^{2}-x y z\right)^{2}, y^{2}\left(x z^{2}-x^{3}\right), z^{4}+2 x z^{3}+x^{2} z^{2} .
$$

Resolving each expression into its factors, we have

$$
\begin{aligned}
\left(y z^{2}-x y z\right)^{2} & =\{y z(z-x)\}^{2}=y^{2} z^{2}(z-x)^{2}, \\
y^{2}\left(x z^{2}-x^{3}\right) & =y^{2} x\left(z^{2}-x^{2}\right)=x y^{2}(z-x)(z+x), \\
z^{4}+2 x z^{3}+x^{2} z^{2} & =z^{2}\left(z^{2}+2 x z+x^{2}\right)=z^{2}(z+x)^{2}
\end{aligned}
$$

Therefore the L.C.M. is $x y^{2} z^{2}(z+x)^{2}(z-x)^{2}$.

EXAMPLES XIV. a.

Find the lowest common multiple of

1. $x y^{2}, 3 y z^{2}, 2 z x^{2}$.
2. $27 a^{3}, 81 b^{3}, 18 a^{2} b^{5}$.
3. $5 a x^{6}, 6 c y, 7 a^{2} x^{3} c^{5} z$.
4. $15 a^{2} b^{3}, 20 a x^{2} y, 30 x^{2}$.
5. $66 a^{2} b^{3} c x^{4}, 55 a b^{5} x y^{3} z, 121 x^{3} y z^{3}$.
6. $a^{2}, a^{3}-a^{2}$.
7. $4 m^{2}, 6 m^{3}-8 m^{2}$.
8. $b^{2}+b, b^{3}-b$.
9. $x^{2}-4, x^{3}+8$.
10. $9 a^{2} b-b, 6 a^{2}+2 a$.
11. $m^{2}-5 m+6, m^{2}+5 m-14$.
12. $y^{2}+3 y^{3}, y^{3}-9 y^{5}$.
13. $x^{3}+27 y^{3}, x^{2}+x y-6 y^{2}$.
14. $c^{2}-3 c x-18 x^{2}, c^{2}-8 c x+12 x^{2}$.
15. $a^{2}-4 a-5, a^{2}-8 a+15, a^{3}-2 a^{2}-3 a$.
16. $2 x^{2}-4 x y-16 y^{2}, x^{2}-6 x y+8 y^{2}, 3 x^{2}-12 y^{2}$.
17. $3 x^{3}-12 \alpha^{2} x, 4 x^{2}+16 a x+16 \alpha^{2}$.
18. $a^{5} c-a^{3} c^{3},\left(a^{2} c+a c^{2}\right)^{2}$.
19. $\left(a^{2} x-2 a x^{2}\right)^{2},\left(2 a x-4 x^{2}\right)^{2}$.
20. $\left(2 a-a^{2}\right)^{3}, 4 a^{2}-4 \alpha^{3}+a^{4}$.
21. $2 x^{2}-x-3,(2 x-3)^{2}, 4 x^{2}-9$.
22. $2 x^{2}-7 x-4,6 x^{2}-7 x-5, x^{3}-8 x^{2}+16 x$.
23. $10 x^{2} y^{2}\left(x^{3}-y^{3}\right), 15 y^{4}(x-y)^{3}, 12 x^{3} y(x-y)\left(x^{2}-y^{2}\right)$.
24. $2 x^{2}+x-6,7 x^{2}+11 x-6,\left(7 x^{2}-3 x\right)^{2}$.
25. $6 a^{3}-7 \alpha^{2} x-3 a x^{2}, 10 a^{2} x-11 a x^{2}-6 x^{3}, 10 a^{2}-21 a x-10 x^{2}$.
26. When the given expressions are such that their factors cannot be determined by inspection, they must be resolved by finding the highest common factor.

Exumple. Find the lowest common multiple of

$$
2 x^{4}+x^{3}-20 x^{2}-7 x+24 \text { and } 2 x^{4}+3 x^{3}-13 x^{2}-7 x+15
$$

The highest common factor is $x^{2}+2 x-3$.
By division, we obtain

$$
\begin{aligned}
2 x^{4}+x^{3}-20 x^{2}-7 x+24 & =\left(x^{2}+2 x-3\right)\left(2 x^{2}-3 x-8\right) . \\
2 x^{4}+3 x^{3}-13 x^{2}-7 x+15 & =\left(x^{2}+2 x-3\right)\left(2 x^{2}-x-5\right) .
\end{aligned}
$$

Therefore the.L.C.M. is $\left(x^{2}+2 x-3\right)\left(2 x^{2}-3 x-8\right)\left(2 x^{2}-x-5\right)$.

EXAMPLES XIV. b.

Find the lowest common multiple of

1. $x^{3}-2 x^{2}-13 x-10$ and $x^{3}-x^{2}-10 x-8$.
2. $y^{3}+3 y^{2}-3 y-9$ and $y^{3}+3 y^{2}-8 y-24$.
3. $m^{3}+3 m^{2}-m-3$ and $m^{3}+6 m^{2}+11 m+6$.
4. $2 x^{4}-2 x^{3}+x^{2}+3 x-6$ and $4 x^{4}-2 x^{3}+3 x-9$.
5. Find the highest common factor and the lowest common multiple of $\left(x-x^{2}\right)^{3},\left(x^{2}-x^{3}\right)^{2}, x^{3}-x^{4}$.
6. Find the lowest common multiple of $\left(a^{4}-a^{2} x^{2}\right)^{2},\left(a^{2}+a x\right)^{3}$, $\left(a x-x^{2}\right)^{2}$.
7. Find the highest common factor and lowest common multiple of $6 x^{2}+5 x-6$ and $6 x^{2}+x-12$; and shew that the product of the H.C.F. and L.C.M. is equal to the product of the two given expressions.
8. Find the highest common factor and the lowest common multiple of $a^{2}+5 a b+6 b^{2}, a^{2}-4 b^{2}, a^{3}-3 a b^{2}+2 b^{3}$.
9. Find the lowest common multiple of $1-x^{2}-x^{4}+x^{5}$ and $1+2 x+x^{2}-x^{4}-x^{5}$.
10. Find the highest common factor of $\left(a^{3}-4 a b^{2}\right)^{2},\left(a^{3}+2 a^{2} b\right)^{3}$, $\left(a^{2} x+2 a b x\right)^{2}$.
11. Find the highest common factor and the lowest common multiple of $\left(3 a^{2}-2 a x\right)^{2}, 2 a^{2} x\left(9 a^{2}-4 x^{2}\right), 6 a^{3} x-13 a^{2} x^{2}+6 a x^{3}$.
12. Find the lowest common multiple of $x^{3}+x^{2} y+x y^{2}, x^{3} y-y^{4}$, $x^{5} y+x^{3} y^{3}+x y^{5}$.

MISCELLANEOUS EXAMPLES II.

The following Miscellaneous Examples on Factors, Highest Common Factor, and Lowest Common Multiple have been selected from Examination Papers set by the Science and Art Department in Mathematics, Stage I.

Resolve into their elementary factors:

1. $x^{2}+17 x-18$.
2. $x^{2}-x-2$.
3. $x^{2}+x-2$.
4. $2 x^{2}+5 x-12$.
5. $x^{3}-8$.
6. $x^{3}+x^{2} y-x y^{2}-y^{3}$.
7. $x^{2}+y^{2}-z^{2}+2 x y$.
8. $2 x^{3}+3 a x^{2}-2 a^{2} x-3 a^{3}$.
9. $x^{2}-6 x y+9 y^{2}-z^{2}$.
10. $x y+4 x-9 y-36$.
11. $(1+x y)^{2}-(x+y)^{2}$.
12. $a^{2}-b^{2}-c^{2}+d^{2}+2(b c-a d)$.
13. $x^{3}+2 x^{2}-9 x-18$.
14. $x^{2}-y^{2}-6 x+6 y$.
15. $x^{4}+4 x^{2} y^{2}+16 y^{4}$.

Write down the following expressions in factors, and find their least common multiple :
16. $15 x^{3}-15,6 x^{2}+12 x-18,10 x^{2}-90$.
17. $4 x^{2}+8 x-12,9 x^{2}-9 x-54,6 x^{4}-30 x^{2}+24$.
18. $x^{2}-8 x+12,3 x^{2}-20 x+12,3 x^{3}-2 x^{2}-12 x+8$.
19. $2 x^{2}+3 x-2$, $(5 x-7)^{2}-(x-5)^{2}, 2 x^{3}-x^{2}-8 x+4$.

Find the greatest common measure of
20. $45 x^{3} y+3 x^{2} y^{2}-9 x y^{3}+6 y^{4}$ and $54 x^{2} y-24 y^{3}$.
21. $3 x^{4}+7 x^{3}+2 x^{2}-31 x-35$ and $15 x^{4}+2 x^{3}-34 x^{2}-34 x-21$.

Find the greatest common measure of the following expressions, and hence find the factors of the expressions :
22. $x^{4}-5 x^{3}-6 x^{2}+35 x-7$ and $3 x^{3}-23 x^{2}+43 x-8$.
23. $x^{3}+3 x^{2}-25 x+21$ and $2 x^{3}-9 x^{2}+10 x-3$.
24. $4 x^{4}-4 x^{3}+x^{2}-1$ and $2 x^{3}+5 x^{2}-2 x+3$.
25. $2 x^{4}-3 x^{3}+4 x^{2}-9 x-6$ and $4 x^{3}-9 x^{2}+12 x-27$.
26. Multiply $a^{3}-x^{3}$ by $a^{2}-x^{2}$, and divide the product by $(a-x)^{2}$.
27. Find the product of $x^{2}+5 x+\frac{25}{2}$ and $x^{2}-5 x+\frac{25}{2}$.
28. Subtract $\left(x^{2}-7 x+13\right)^{2}$ from $\left(x^{2}+7 x-13\right)^{2}$.
29. Obtain $\left(x^{3}+3 x+15\right)^{2}-\left(x^{3}-3 x+15\right)^{2}$ in its simplest form, and find its value when $2 x=-5$.
30. Shew that the following expression is the product of three factors:

$$
3 a\left(2 a^{2}+b^{2}\right)+9 a^{2} b+b(a+b)(2 a+b) .
$$

CHAPTER XV.

Fractions.

101. In Arithmetic the fraction $\frac{3}{8}$ is defined as that which is obtained when the unit is divided into eight equal parts of which three are taken. It is then shewn that the same result is given by dividing 3 units by 8 .

It is convenient for algebraical purposes to adopt the latter view of a fraction, and to define the fraction $\frac{\alpha}{b}$ as the quotient obtained when a is divided by b , whatever values a and b may have.

When a and b represent positive whole numbers, the fraction $\frac{a}{b}$ indicates that the unit has been divided into b equal parts of which a have been taken.

The same general rules apply to algebraical as to arithmetical fractions. For proofs of these rules the reader is referred to Hall and Knight's Elementary Algebra, Chapters xix. and xxi.

Reduction to Lowest Terms.

102. The value of a fraction is not altered if we multiply or divide both numerator and denominator by the same quantity. [Elementary Algebra, Art. 150.]

Rule. To reduce a fraction to its lowest terms: divide numerator and denominator by every factor which is common to both, that is, by their highest common factor.

Examples.
(1) $\frac{6 a^{2} c}{9 a c^{2}}=\frac{3 a c \times 2 \alpha}{3 a c \times 3 c}=\frac{2 a}{3 c}$.

$$
\begin{equation*}
\frac{7 x^{2} y z}{28 x^{3} y z^{2}}=\frac{7 x^{2} y z \times 1}{7 x^{2} y z \times 4 x z}=\frac{1}{4 x z} . \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{24 a^{3} c^{2} x^{2}}{18 a^{3} x^{2}-12 a^{2} x^{3}}=\frac{6 a^{2} x^{2} \times 4 a c^{2}}{6 a^{2} x^{2}(3 a-2 x)}=\frac{4 a c^{2}}{3 a-2 x} . \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{6 x^{2}-8 x y}{9 x y-12 y^{2}}=\frac{2 x(3 x-4 y)}{3 y(3 x-4 y)}=\frac{2 x}{3 y} . \tag{4}
\end{equation*}
$$

Note. Dividing numerator and denominator of a fraction by a common factor is called cancelling that factor. The beginner should be careful not to begin cancelling until he has expressed both numerator and denominator in the most convenient form, by resolution into factors where necessary.

EXAMPLES XV. a.

Reduce to lowest terms :

1. $\frac{14 x y^{3}}{21 x^{2} z^{3}}$.
2. $\frac{15 k^{2} p^{3} m^{4}}{25 k^{3} p m^{2}}$.
3. $\frac{27 a^{4} b^{3} x^{2}}{45 a^{3} b^{4} x^{4}}$.
4. $\frac{42 x^{2} y^{2} z^{2}}{210 x^{3} y^{2} z}$.
5. $\frac{3 x^{2}}{6 x^{2}-? x y}$.
6. $\frac{3 a b+b^{2}}{6 a^{2} b^{2}+2 a b^{3}}$.
7. $\frac{5 x^{2} y z^{2}}{5 x^{2} y+10 x^{2} z}$
8. $\frac{2 x^{2} y^{2}-8}{3 x^{2} y+6 x}$.
9. $\frac{x^{2}+4 x}{x^{2}+x-12}$.
10. $\frac{7 a^{2} x-7 a^{2} c}{5 c x^{2}-10 c^{2} x+5 c^{3}}$.
11. $\frac{x^{2}+x-30}{5 x^{2}+30 x}$.
12. $\frac{(2 a+b)^{2}}{4 a^{3}-a b^{2}}$.
13. $\frac{a^{3}+b^{3}}{a^{2}-a b-2 b^{2}}$.
14. $\frac{2 c^{2}+5 c d-3 d^{2}}{c^{2}+6 c d+9 d^{2}}$. 15. $\frac{x^{2}-4 x-21}{3 x^{2}+10 x+3}$.
15. $\frac{2 x^{2}+x-3}{2 x^{2}+11 x+12}$.
16. $\frac{3 x^{3}-24}{4 a^{2}+4 a-24}$.
17. $\frac{18 \alpha^{3}+6 \alpha^{2} x+2 a x^{2}}{27 a^{3}-x^{3}}$.
18. When the factors of the numerator and denominator cannot be determined by inspection, the fraction may be reduced to its lowest terms by dividing both numerator and denominator by the highest common factor, which may be found by the rules given in Chap. xiri.

Example. Reduce to lowest terms $\frac{3 x^{3}-13 x^{2}+23 x-21}{15 x^{3}-38 x^{2}-2 x+21}$.
The н.c.F. of numerator and denominator is $3 x-7$.
Dividing numerator and denominator by $3 x-7$, we obtain as respective quotients $x^{2}-2 x+3$ and $5 x^{2}-x-3$.

$$
\text { Thus } \frac{3 x^{3}-13 x^{2}+23 x-21}{15 x^{3}-38 x^{2}-2 x+21}=\frac{(3 x-7)\left(x^{2}-2 x+3\right)}{(3 x-7)\left(5 x^{2}-x-3\right)}=\frac{x^{2}-2 x+3}{5 x^{2}-x-3} .
$$

104. If either numerator or denominator can readily be resolved into factors we may use the following method.

Example. Reduce to lowest terms $\frac{x^{3}+3 x^{2}-4 x}{7 x^{3}-18 x^{2}+6 x+5}$.
The numerator $=x\left(x^{2}+3 x-4\right)=x(x+4)(x-1)$.
Of these factors the only one which can be a common divisor is $x-1$. Hence, arranging the denominator so as to shew $x-1$ as a factor,

$$
\begin{aligned}
\text { the fraction } & =\frac{x(x+4)(x-1)}{7 x^{2}(x-1)-11 x(x-1)-5(x-1)} \\
& =\frac{x(x+4)(x-1)}{(x-1)\left(7 x^{2}-11 x-5\right)}=\frac{x(x+4)}{7 x^{2}-11 x-5} .
\end{aligned}
$$

EXAMPLES XV. b.

Reduce to lowest terms:

1. $\frac{x^{3}-x^{2}+2 x-2}{3 x^{4}+7 x^{2}+2}$.
2. $\frac{a^{3}+a+2}{a^{3}-4 a^{2}+5 a-6}$.
3. $\frac{y^{3}-2 y^{2}-2 y-3}{3 y^{3}+4 y^{2}+4 y+1}$.
4. $\frac{m^{3}-m^{2}-2 m}{m^{3}-m^{2}-m-2}$.
5. $\frac{a^{3}-2 a b^{2}+21 b^{3}}{a^{3}-4 a^{2} b-21 a b^{2}}$.
6. $\frac{9 x^{3}-a^{2} x-2 \alpha^{3}}{3 x^{3}-10 a x^{2}-7 a^{2} x-4 \alpha^{3}}$.
7. $\frac{5 x^{3}-4 x-1}{2 x^{3}-3 x^{2}+1}$.
8. $\frac{c^{3}+2 c^{2} d-12 c d^{2}-9 d^{3}}{2 c^{3}+6 c^{2} d-28 c d^{2}-24 d^{3}}$.
9. $\frac{x^{4}-21 x+8}{8 x^{4}-21 x^{3}+1}$.
10. $\frac{y^{5}+6 y^{4}+2 y^{3}-9 y^{2}}{y^{4}+7 y^{3}+3 y^{2}-11 y}$.
11. $\frac{1-x^{2}+6 x^{3}}{2-x+9 x^{3}}$.
12.

$$
\frac{2-5 x-4 x^{2}+3 x^{3}}{4+4 x+9 x^{2}+4 x^{3}-5 x^{4}}
$$

Multiplication and Division of Fractions.

105. Rule. To multiply together two or more fractions: multiply the numerators to form a new numerator, and the denominator to form a new denominator.
[Hall and Knight's Elementary Algebra, Art. 157.]
Thus

$$
\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}
$$

Similarly,

$$
\frac{a}{b} \times \frac{c}{d} \times \frac{e}{f}=\frac{a c e}{b d f}
$$

and so for any number of fractions.
In practice the application of this rule is modified by removing in the course of the work factors which are common to numerator and denominator.

Example 1.

$$
\frac{2 a}{3 b} \times \frac{5 x^{2}}{2 a^{2} b} \times \frac{3 b^{2}}{2 x}=\frac{2 a \times 5 x^{2} \times 3 b^{2}}{3 b \times 2 a^{2} b \times 2 x}=\frac{5 x}{2 a},
$$

this result being obtained by cancelling out like factors in numerator and denominator.

Example 2. Simplify $\frac{2 a^{2}+3 a}{4 a^{3}} \times \frac{4 \alpha^{2}-6 a}{12 a+18}$.
The expression $=\frac{a(2 a+3)}{4 a^{3}} \times \frac{2 a(2 a-3)}{6(2 a+3)}=\frac{2 a-3}{12 a}$,
by cancelling those factors which are common to both numerator and denominator.
106. Rule. To divide one fraction by another: invert the divisor, and proceed as in multiplication. [Elem. Alg. Art. 158.]

Thus

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c} .
$$

Example 1. $\frac{7 a^{3}}{4 x^{3} y^{2}} \times \frac{6 c^{3} x}{5 a b^{2}} \div \frac{28 a^{2} c^{2}}{15 b^{2} x y^{2}}$

$$
=\frac{7 x^{3}}{4 x^{3} y^{2}} \times \frac{6 c^{3} x}{5 a b^{2}} \times \frac{15 b^{2} x y^{2}}{28 a^{2} c^{2}}=\frac{9 c}{8 x},
$$

since all the other factors cancel one another.
Example 2. Simplify $\frac{6 x^{2}-a x-2 a^{2}}{a x-a^{2}} \times \frac{x-a}{9 x^{2}-4 a^{2}} \div \frac{2 x+a}{3 a x+2 a^{2}}$.
The expression $=\frac{6 x^{2}-a x-2 a^{2}}{a x-a^{2}} \times \frac{x-a}{9 x^{2}-4 a^{2}} \times \frac{3 a x+2 x^{2}}{2 x+a}$

$$
\begin{aligned}
& =\frac{(3 x-2 a)(2 x+a)}{a(x-a)} \times \frac{x-a}{(3 x+2 a)(3 x-2 a)} \times \frac{a(3 x+2 a)}{2 x+a} \\
& =1,
\end{aligned}
$$

since all the factors cancel each other.

EXAMPLES XV. c.

Simplify

1. $\frac{3 a b^{2}}{5 b^{3} c} \times \frac{15 b^{2} c^{2}}{9 a^{2} b}$.
2. $\frac{4 a^{2} b}{9 x y} \times \frac{3 p^{2} q^{2}}{8 a^{2} b^{2}} \div \frac{p q}{x^{2} y^{2}}$.
3. $\frac{x^{2}-1}{x^{2}+3 x} \times \frac{2 x^{3}+6 x^{2}}{x^{2}+x}$.
4. $\frac{2 c^{2}+3 c d}{4 c^{2}-9 d^{2}} \div \frac{c+d}{2 c d-3 d^{2}}$.
5. $\frac{b^{2}-5 b}{3 b-4 a} \times \frac{9 b^{2}-16 a^{2}}{b^{2}-25}$.
6. $\frac{a^{2} m}{b^{2} y} \times \frac{2 c d^{2}}{3 a b} \times \frac{9 m y}{4 m^{2}}$.
7. $\frac{2 a^{3} p^{2}}{5 a x^{4}} \times \frac{10 b^{2}}{4 x^{2}} \div \frac{b^{2} p^{2}}{3 x^{6}}$.
8. $\frac{a b+2}{4 a^{2}-12 a b} \times \frac{a^{2} b-3 a b^{2}}{a^{2} b^{2}-4}$.
9. $\frac{5 y-10 y^{2}}{12 y^{2}+6 y^{3}} \div \frac{1-2 y}{2 y+y^{2}}$.
10. $\frac{x^{2}+9 x+20}{x^{2}+5 x+4} \div \frac{x^{2}+7 x+10}{x^{2}+3 x+2}$.
11. $\frac{y^{2}-y-12}{y^{2}-16} \times \frac{y^{2}-2 y-24}{y^{2}+6 y+9}$.
12. $\frac{a^{3}+27}{a^{2}+9 a+14} \div \frac{a^{2}-4 a-21}{a^{2}-49}$.
13. $\frac{2 a^{2}-3 a-2}{a^{2}-a-6} \times \frac{3 a^{2}-8 a-3}{3 a^{2}-5 a-2}$.
14. $\frac{b^{3}+125}{5 b^{2}+24 b-5} \times \frac{25 b^{2}-1}{b^{3}-5 b^{2}+25 b}$.
15. $\frac{2 p^{2}+4 p}{p^{2}-9} \times \frac{p^{2}-5 p+6}{p^{2}-5 p} \times \frac{p^{2}-2 p-15}{p^{2}-4}$.
16. $\frac{64 a^{2} b^{2}-1}{x^{2}-x-56} \times \frac{x^{2}-49}{8 a^{3} b-a^{2}} \div \frac{x-7}{a^{2} x-8 a^{2}}$.
17.

$$
\frac{4 x^{2}+4 x-15}{x^{2}+2 x-48} \times \frac{x+8}{2 x^{2}-15 x+18} \div \frac{2 x^{2}+5 x}{(x-6)^{2}} .
$$

18.

$$
\frac{a^{2}+8 a b-9 b^{2}}{a^{2}+6 a b-27 b^{2}} \times \frac{a^{2}-7 a b+12 b^{2}}{a^{3}-b^{3}} \times \frac{a^{3}+a^{2} b+a b^{2}}{a^{2}-3 a b-4 b^{2}} .
$$

19.

$$
\frac{a x^{2}-16 a^{3}}{x^{2}-a x-30 a^{2}} \times \frac{x^{2}+a x-20 a^{2}}{a x^{2}+9 a^{2} x+20 a^{3}} \div \frac{x^{2}-8 a x+16 a^{2}}{x^{2}+8 a x+15 a^{2}} .
$$

20. $\frac{(a-b)^{2}-c^{2}}{a^{2}-a b+a c} \times \frac{a^{2}+a b+a c}{(a-c)^{2}-b^{2}} \times \frac{(a+b)^{2}-c^{2}}{(a+b+c)^{2}}$.

Addition and Subtraction of Fractions.

107. To find the algebraical sum of a number of fractions we must, as in Arithmetic, first reduce them to a common denominator. For this purpose it is usually most convenient to take the lowest common denominator.

Rule. To reduce fractions to their lowest common denominator: find the L.C.M. of the given denominators, and take it for the common denominator; divide it by the denominator of the first fraction, and multiply the numerator of this fraction by the quotient so obtained; and do the same with all the other given fractions.

Example. Express with lowest common denominator

$$
\frac{5 x}{2 a(x-a)} \text { and } \frac{4 \alpha}{3 x\left(x^{2}-a^{2}\right)}
$$

The lowest common denominator is $6 a x(x-a)(x+\alpha)$.
We must therefore multiply the numerators by $3 x(x+a)$ and $2 a$ respectively.

Hence the equivalent fractions are

$$
\frac{15 x^{2}(x+a)}{6 a x(x-a)(x+a)} \text { and } \frac{8 a^{2}}{6 a x(x-a)(x+a)}
$$

108. We may now enunciate the rule for the addition or subtraction of fractions.

Rule. To add or subtract fractions: reduce them to the lowest common denominator; find the algebraical sum of the numerators, and retain the common denominator:

Thus

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d},
$$

and

$$
\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d} . \quad \text { [Elem. Alg., Art. 165.] }
$$

Example 1. Simplify $\frac{5 x}{3}+\frac{3}{4} x-\frac{7 x}{6}$.
The least common denominator is 12 .
The expression $=\frac{20 x+9 x-14 x}{12}=\frac{15 x}{12}=\frac{5 x}{4}$.
Example 2. Simplify $\frac{3 a b}{5 x}-\frac{a b}{2 x}-\frac{a b}{10 x}$.
The expression $=\frac{6 a b-5 a b-a b}{10 x}=\frac{0}{10 x}=0$.
When no denominator is expressed the denominator 1 may be understood.

Example 3. $3 x-\frac{a^{2}}{4 y}=\frac{3 x}{1}-\frac{a^{2}}{4 y}=\frac{12 x y-a^{2}}{4 y}$.
It a fraction is not in its lowest terms it should be simplified before combining it with other fractions.

Example 4. $\frac{a x}{2}-\frac{x^{2} y}{3 x y}=\frac{a x}{2}-\frac{x}{3}=\frac{3 a x-2 x}{6}$.
Example 5. Find the value of $\frac{x-2 y}{x y}+\frac{3 y-a}{a y}-\frac{3 x-2 a}{a x}$.
The lowest common denominator is $a x y$.
Thus the expression $=\frac{a(x-2 y)+x(3 y-a)-y(3 x-2 a)}{a x y}$

$$
\begin{aligned}
& =\frac{a x-2 a y+3 x y-a x-3 x y+2 a y}{a x y} \\
& =0,
\end{aligned}
$$

since the terms in the numerator destroy each other.
Note. To ensure accuracy the beginner is recommended to use brackets as in the first line of work above.

EXAMPLES XV. d.

Find the value of

1. $\frac{a}{4}-\frac{a}{8}+\frac{a}{12}$.
2. $\frac{2 x}{3}-\frac{x}{6}+\frac{9 x}{12}$.
3. $\frac{a}{x y}+\frac{2 \alpha}{y z}-\frac{3 a}{x z}$.
4. $\frac{x y}{5 x}-\frac{2 y}{3}+\frac{4 y}{8}$.
5. $2+\frac{a}{b}-\frac{b^{2}}{a b}$.
6. $a+\frac{b}{p^{2} q}-\frac{c}{q^{2}}$.
7. $\frac{a-2}{3}+\frac{a-1}{2}+\frac{a+5}{6}$.
8. $\frac{2 b-1}{5}+\frac{b-3}{2}-\frac{7 b+3}{10}$.
9. $-\frac{2 x-1}{5}+\frac{3 x-1}{7}-\frac{x-2}{35}$.
10. $\frac{2 x-5}{x}-\frac{x-4}{x}-\frac{x^{2}-4 x}{3 x^{2}}$.
11. $-\frac{a+x}{2 a}+\frac{a+2 x}{3 a}-\frac{x-5 a}{6 a}$.
12. $\frac{2 \alpha^{2}-5 a}{a}-\frac{\alpha^{3}+3 \alpha^{2}}{a^{2}}+\frac{9 \alpha^{3}-\alpha^{4}}{a^{3}}$.
13. $-\frac{x-y}{y}+\frac{x+y}{x}-\frac{6 x y-4 x^{2}}{3 x y}$.
14. $\frac{a b-b c}{2 b c}-\frac{a}{3 c}-\frac{2 a^{2}-a b}{2 a b}$.
15. $\frac{2 a y-x y+4 x}{2 x y}-1-\frac{a}{2 x}$.
16. $\frac{a^{2}-a b}{a^{2} b}-\frac{b-c}{b c}-\frac{2 c^{2}-a c}{c^{2} a}$.
17. We shall now consider the addition and subtraction of fractions whose denominators are compound expressions. The lowest common multiple of the denominators should always be written down by inspection when possible.

Example 1. Simplify $\frac{2 x-3 a}{x-2 a}-\frac{2 x-a}{x-a}$.
The lowest common denominator is $(x-2 a)(x-a)$.
Hence, multiplying the numerators by $x-a$ and $x-2 \alpha$ respectively, we have

$$
\begin{aligned}
\text { the expression } & =\frac{(2 x-3 a)(x-a)-(2 x-a)(x-2 a)}{(x-2 a)(x-a)} \\
& =\frac{2 x^{2}-5 a x+3 a^{2}-\left(2 x^{2}-5 a x+2 \alpha^{2}\right)}{(x-2 a)(x-a)} \\
& =\frac{2 x^{2}-5 a x+3 a^{2}-2 x^{2}+5 a x-2 a^{2}}{(x-2 a)(x-a)} \\
& =\frac{a^{2}}{(x-2 a)(x-a)} .
\end{aligned}
$$

Note. In finding the value of such an expression as

$$
-(2 x-a)(x-2 a)
$$

the beginner should first express the product in brackets, and then remove the brackets, as we have done. After a little practice he will be able to take both steps together.

Example 2. Find the value of $\frac{3 x+2}{x^{2}-16}+\frac{x-5}{(x+4)^{2}}$.
The lowest common denominator is $(x-4)(x+4)^{2}$.
Hence the expression $=\frac{(3 x+2)(x+4)+(x-5)(x-4)}{(x-4)(x+4)^{2}}$

$$
\begin{aligned}
& =\frac{3 x^{2}+14 x+8+x^{2}-9 x+20}{(x-4)(x+4)^{2}} \\
& =\frac{4 x^{2}+5 x+28}{(x-4)(x+4)^{2}} .
\end{aligned}
$$

If a fraction is not in its lowest terms, it should be simplified before it is combined with other fractions.

Example 3. Simplify $\frac{a^{2}+2 a}{a^{2}+a-2}-\frac{a}{2 a+2}-\frac{a^{2}+a+2}{2 a^{2}-2}$.
The expression $=\frac{a(a+2)}{(a+2)(a-1)}-\frac{a}{2(a+1)}-\frac{a^{2}+a+2}{2\left(a^{2}-1\right)}$

$$
\begin{aligned}
& =\frac{a}{a-1}-\frac{a}{2(a+1)}-\frac{a^{2}+a+2}{2\left(a^{2}-1\right)} \\
& =\frac{2 a(a+1)-a(a-1)-\left(a^{2}+a+2\right)}{2\left(a^{2}-1\right)} \\
& =\frac{2 a-2}{2\left(a^{2}-1\right)}=\frac{2(a-1)}{2\left(a^{2}-1\right)}=\frac{1}{a+1} .
\end{aligned}
$$

Sometimes the work will be simplified by first combining two of the fractions, instead of finding the lowest common multiple of all the denominators at once.

Example 4. Simplify $\frac{3}{8(a-x)}-\frac{1}{8(a+x)}-\frac{a-2 x}{4\left(a^{2}+x^{2}\right)}$.
Taking the first two fractions together, the expression $=\frac{3(a+x)-(a-x)}{8\left(a^{2}-x^{2}\right)}-\frac{a-2 x}{4\left(a^{2}+x^{2}\right)}$

$$
\begin{aligned}
& =\frac{a+2 x}{4\left(a^{2}-x^{2}\right)}-\frac{a-2 x}{4\left(a^{2}+x^{2}\right)} \\
& =\frac{(a+2 x)\left(a^{2}+x^{2}\right)-(a-2 x)\left(a^{2}-x^{2}\right)}{4\left(a^{4}-x^{4}\right)} \\
& =\frac{a^{3}+2 a^{2} x+a x^{2}+2 x^{3}-\left(a^{3}-2 a^{2} x-a x^{2}+2 x^{3}\right)}{4\left(a^{4}-x^{4}\right)} \\
& =\frac{4 a^{2} x+2 a x^{2}}{4\left(a^{4}-x^{4}\right)}=\frac{a x(2 a+x)}{2\left(a^{4}-x^{4}\right)}
\end{aligned}
$$

EXAMPLES XV. e.

Find the value of

1. $\frac{1}{a-2}+\frac{1}{a-3}$.
2. $\frac{1}{x-4}-\frac{1}{x-2}$.
3. $\frac{a}{x-a}-\frac{b}{x-b}$.
4. $\frac{a-x}{a+x}+\frac{a+x}{a-x}$.
5. $\frac{x}{x-1}-\frac{x^{2}}{x^{2}-1}$.
6. $\frac{3 a}{a^{2}-4}-\frac{1}{a+2}$.
7. $\frac{x^{2}}{x^{2}-4 y^{2}}+\frac{x-2 y}{x+2 y}$
8. $\frac{3 a}{2 x(x-a)}-\frac{2 a}{3 x(x+a)}$.
9. $\frac{5}{x-2}-\frac{4 x}{(x-2)(x+1)}$.
10. $\frac{1}{y^{2}-2 y-3}+\frac{3(y+2)}{y^{2}-y-6}$.
11. $\frac{1}{1-a}+\frac{a}{(1-a)^{2}}$. 12. $\frac{3}{x+y}-\frac{2 x}{(x+y)^{2}} \quad$ 13. $\frac{2 x+y}{x^{2}-y^{2}}-\frac{2 x-y}{(x+y)^{2}}$.
12. $\frac{b+c}{b^{2}-2 b c+c^{2}}-\frac{b-2 c}{b^{2}-c^{2}}$.
13. $\frac{x}{x y-y^{2}}-\frac{x y}{x^{3}-x^{2} y}$.
14. $\frac{4 a^{2}-b^{2}}{2 a b-b^{2}}-\frac{4 a}{2 a+b}$.
15. $\frac{x^{2}}{x^{3}+1}-\frac{1}{x+1}$.
16. $\frac{2 b-4}{b^{3}+8}+\frac{1}{b+2}$.
17. $\frac{x^{2}-2 y^{2}}{x^{2}+x y+y^{2}}+\frac{x^{2} y^{2}-2 y^{4}}{x^{3} y-y^{4}}$.
18. $\frac{1}{a^{2}-3 a+2}+\frac{1}{a^{2}+3 a-10}$.
19. $x+2-\frac{x-2}{x-1}$.
20. $4+\frac{a-6}{2+a}-2 a$.
21. $\frac{1}{x^{2}}+\frac{x^{2}}{x+1}-\frac{1}{x}$.
22. $\frac{1}{x}-\frac{2}{x-2}+\frac{1}{x-4}$.
23. $\frac{6}{2 x-1}-\frac{3}{2 x+1}-\frac{2-3 x}{4 x^{2}-1}$.
24. $\frac{1+2 a}{3-3 a}-\frac{3 a^{2}+2 a}{2-2 a^{2}}+1$.
25. $\frac{2 x}{9-6 x}+\frac{5}{6+4 x}-\frac{4 x^{2}-9 x}{27-12 x^{2}}$.
26. $\frac{1}{x-a}+\frac{2 a}{(x-a)^{2}}+\frac{a^{2}}{(x-a)^{3}}$.
27. $\frac{2}{(a+1)^{2}}-\frac{a-3}{(a+1)^{4}}+\frac{2}{(a+1)^{3}}$.
28. $\frac{1}{2 y^{2}-y-3}-\frac{1}{2 y^{2}+y-1}$.
29. $\frac{5}{4+3 x-x^{2}}-\frac{2}{3+4 x+x^{2}}$.
30. $\frac{1}{z(z-1)}+\frac{1}{z(z+1)}-\frac{2}{z^{2}-1}$.
31. $\frac{2}{(x-2)^{2}}-\frac{x}{x^{2}+4}+\frac{1}{x-2}$.
32. $\frac{y-2}{(y-3)(y-4)}-\frac{2(y-3)}{(y-2)(y-4)}+\frac{y-4}{(y-2)(y-3)}$.
33. $\frac{1}{1-x}-\frac{2+x}{(1-x)(2-x)}+\frac{2+3 x+3 x^{2}}{(1-x)(2-x)(3+x)}$.
34. $\frac{2}{x^{2}-5 x y+6 y^{2}}-\frac{3}{x^{2}-x y-6 y^{2}}+\frac{1}{x^{2}-4 y^{2}}$.
35. $\frac{5 a}{6\left(a^{2}-1\right)}-\frac{a+3}{2\left(a^{2}+2 a-3\right)}+\frac{a+1}{3 a^{2}+6 a+3}$.
36. $\frac{a}{a-b}-\frac{b^{2}}{a^{2}+a b+b^{2}}-\frac{a^{3}+b^{3}}{a^{3}-b^{3}}$.
37. $\frac{3(6-x)}{x^{3}+27}+\frac{x-3}{x^{2}-3 x+9}-\frac{1}{x+3}$.
38.

$$
\frac{1}{(x-y)^{2}}-\frac{1}{x^{2}+2 x y+y^{2}}-\frac{4 x y}{x^{4}-2 x^{2} y^{2}+y^{4}} .
$$

41.

$$
\frac{x}{(x-a)^{2}}-\frac{a}{x^{2}-a^{2}}-\frac{a x}{(x-a)^{3}} .
$$

42.

$\frac{1}{2-x}+\frac{1}{2+x}-\frac{3}{4+x^{2}}$.
43. $\frac{x}{4(1+x)}-\frac{x}{4(1-x)}+\frac{3}{2\left(1+x^{2}\right)}$.
44.

$$
\frac{3}{2 m-4}-\frac{3}{2 m+4}-\frac{2}{3 m^{2}+12} .
$$

45. $\frac{a}{a-b}-\frac{b}{a+b}-\frac{b^{2}}{a^{2}+b^{2}}$.
46. $\frac{x-3}{x-4}=\frac{x-1}{x-2}-\frac{1}{(x-2)^{2}}$.
47. $\frac{x-3}{x-6}-\frac{x-6}{x-3}+\frac{x-3}{x}-\frac{x}{x-3}$.

Changes of Sign in Addition of Fractions.

110. An algebraical fraction has been defined in Art. 101 as the quotient obtained by dividing the numerator by the denominator. Hence, by Art. 39, it follows from the Rule of Signs as applied to division that
(1). If the signs of вотн numerator and denominator of a fraction be changed, the sign of the whole fraction will be unchanged.
(2) If the sign of the numerator alone be changed, the sign of the whole fraction will be changed.
(3) If the sign of the denominator alone be changed, the sign of the whole fraction will be changed.

Example 1. $\frac{b-a}{y-x}=\frac{-(b-a)}{-(y-x)}=\frac{-b+a}{-y+x}=\frac{a-b}{x-y}$.
Example 2. $\frac{x-x^{2}}{2 y}=-\frac{-x+x^{2}}{2 y}=-\frac{x^{2}-x}{2 y}$.
Example 3. $\frac{3 x}{4-x^{2}}=-\frac{3 x}{-4+x^{2}}=-\frac{3 x}{x^{2}-4}$.
111. The following examples illustrate an important application of the foregoing principles.

Example 1. Simplify $\frac{a}{x+\alpha}+\frac{2 x}{x-a}+\frac{a(3 x-a)}{\alpha^{2}-x^{2}}$.
Here it is evident that the lowest common denominator of the first two fractions is $x^{2}-a^{2}$, therefore it will be convenient to alter the sign of the denominator in the third fraction.

Thus the expression $=\frac{a}{x+a}+\frac{2 x}{x-a}-\frac{a(3 x-a)}{x^{2}-a^{2}}$

$$
\begin{aligned}
& =\frac{a(x-a)+2 x(x+a)-a(3 x-\alpha)}{x^{2}-a^{2}} \\
& =\frac{a x-a^{2}+2 x^{2}+2 a x-3 a x+a^{2}}{x^{2}-a^{2}} \\
& =\frac{2 x^{2}}{x^{2}-a^{2}} .
\end{aligned}
$$

Example 2. Simplify $\frac{1}{(a-b)(a-c)}+\frac{1}{(b-c)(b-a)}+\frac{1}{(c-a)(c-b)}$.
Here in finding the L.C.M. of the denominators it must be observed that there are not six different compound factors to be considered; for three of them differ from the other three only in sign.

Thus

$$
\begin{gathered}
(a-c)=-(c-a), \\
(b-a)=-(a-b), \\
(c-b)=-(b-c) .
\end{gathered}
$$

Hence, replacing the second factor in each denominator by its equivalent, we may write the expression in the form

$$
-\frac{1}{(a-b)(c-a)}-\frac{1}{(b-c)(a-b)}-\frac{1}{(c-a)(b-c)^{\circ}} .
$$

Now the L.C.M. is $(b-c)(c-a)(a-b)$;
and the expression $=\frac{-(b-c)-(c-a)-(a-b)}{(b-c)(c-a)(a-b)}$

$$
\begin{aligned}
& =\frac{-b+c-c+a-a+b}{(b-c)(c-a)(a-b)} \\
& =0 .
\end{aligned}
$$

Note. In examples of this kind it will be found convenient to arrange the expressions cyclically, that is, so that a is followed by b, b by c, and c by a.
112. If the sign of each of two factors in a product is changed, the sign of the product is unaltered; thus

$$
(a-x)(b-x)=\{-(x-a)\}\{-(x-b)\}=(x-a)(x-b)
$$

Similarly,

$$
(\alpha-x)^{2}=(x-\alpha)^{2}
$$

In other words, in the simplification of fractions we may change the sign of each of two factors in a denominator without altering the sign of the fraction ; thus

$$
\frac{1}{(b-a)(c-b)}=\frac{1}{(a-b)(b-c)} .
$$

113. The arrangement adopted in the following example is worthy of notice.

Example. Simplify $\frac{1}{a-x}-\frac{1}{a+x}-\frac{2 x}{a^{2}+x^{2}}-\frac{4 x^{3}}{a^{4}+x^{4}}$.
Here it should be evident that the first two denominators give L.C.M. $a^{2}-x^{2}$, which readily combines with $a^{2}+x^{2}$ to give L.C.M. $a^{4}-x^{4}$, which again combines with $a^{4}+x^{4}$ to give L.C.M. $a^{8}-x^{8}$. Hence it will be convenient to proceed as follows:

$$
\begin{aligned}
\text { The expression } & =\frac{a+x-(a-x)}{a^{2}-x^{2}}-. . \\
& =\frac{2 x}{a^{2}-x^{2}}-\frac{2 x}{a^{2}+x^{2}}- \\
& =\frac{4 x^{3}}{a^{4}-x^{4}}-\frac{4 x^{3}}{a^{4}+x^{4}} \\
& =\frac{8 x^{7}}{a^{8}-x^{8}}
\end{aligned}
$$

EXAMPLES XV. f.

Find the value of

1. $\frac{5}{1+2 x}-\frac{3 x}{1-2 x}+\frac{4-13 x}{4 x^{2}-1}$.
2. $\frac{10}{9-a^{2}}-\frac{2}{3+a}+\frac{1}{a-3}$.
3. $\frac{5 a}{6\left(a^{2}-1\right)}+\frac{1}{2(1-a)}+\frac{1}{3(a+1)}$.
4. $\frac{2 y}{2 y-3}-\frac{5}{6 y+9}+\frac{12 y+8}{27-12 y^{2}}$.
5. $\frac{x+a}{x-a}-\frac{x-a}{x+a}+\frac{4 a x}{a^{2}-x^{2}}$.
6. $\frac{a}{a-b}-\frac{b}{a+b}+\frac{b}{b-a}$.
7. $\frac{a}{x^{2}-x}+\frac{a}{x-x^{3}}-\frac{a}{x^{2}-1}$.
8. $\frac{x^{6}-x^{3} y^{3}}{y^{6}-x^{6}}+\frac{x^{3} y^{3}}{x^{3} y^{3}-y^{6}}$
9. $\frac{1}{(y-2)(y-3)}+\frac{2}{(y-1)(3-y)}+\frac{1}{(y-1)(y-2)}$.
10. $\frac{a}{(x-a)(a-b)}-\frac{b}{(x-b)(a-b)}+\frac{x}{(a-x)(b-x)}$.
11. $\frac{2}{x-1}+\frac{3}{(1-x)^{2}}-\frac{1}{2 x-1}$.
12. $\frac{1}{a-b}-\frac{a}{(a-b)^{2}}-\frac{a b}{(b-a)^{3}}$.
13. $\frac{a+c}{(a-b)(x-a)}-\frac{b+c}{(b-a)(b-x)}$.
14. $\frac{x-z}{(x-y)(a-x)}-\frac{y-z}{(y-x)(y-a)}$.
15. $\frac{a+b}{b}-\frac{2 a}{a+b}+\frac{a^{3}-a^{2} b}{b\left(b^{2}-a^{2}\right)}$.
16. $\frac{1}{a+x}+\frac{1}{a-2 x}-\frac{1}{x-a}+\frac{1}{2 x+a}$.
17. $\frac{3}{a+x}-\frac{1}{3 x+a}+\frac{3}{x-a}+\frac{1}{a-3 x}$.
18. $\frac{x}{(x-y)(x-z)}+\frac{y}{(y-z)(y-x)}+\frac{z}{(z-x)(z-y)}$.
19. $\frac{a}{(b-c)(b-a)}+\frac{b}{(c-a)(c-b)}+\frac{c}{(a-b)(a-c)}$.
20. $\frac{y-z}{(x-y)(x-z)}+\frac{z-x}{(y-z)(y-x)}+\frac{x-y}{(z-x)(z-y)}$.
21. $\frac{1+p}{(p-q)(p-r)}+\frac{1+q}{(q-r)(q-p)}+\frac{1+r}{(r-p)(r-q)}$.
22. $\frac{1}{4(x+a)}-\frac{1}{4(a-x)}+\frac{x}{2\left(x^{2}-a^{2}\right)}+\frac{x^{3}}{a^{4}-x^{4}}$.
23. $\frac{1}{2 a^{3}(a+x)}-\frac{1}{2 \alpha^{3}(x-a)}+\frac{1}{a^{2}\left(a^{2}+x^{2}\right)}+\frac{2 a^{4}}{x^{8}-\alpha^{8}}$.
24. $\frac{a}{a^{2}-b^{2}}-\frac{b}{a^{2}+b^{2}}+\frac{a^{3}+b^{3}}{b^{4}-a^{4}}+\frac{a b}{(a+b)\left(a^{2}+b^{2}\right)}$.
25. $\frac{1}{x-2}+\frac{2}{(2+x)^{2}}+\frac{2}{(2-x)^{2}}-\frac{1}{x+2}$.

Simplification of Complex Fractions.

114. Definition. A fraction whose numerator and denominator are whole numbers is called a Simple Fraction.

A fraction of which the numerator or denominator is itself a fraction is called a Complex Fraction.

Thus $\quad \frac{a}{\bar{b}}, \frac{\bar{b}}{\bar{c}}, \frac{\frac{a}{b}}{x}, \frac{\bar{c}}{d}$ are Complex Fractions.
In the last of these types the outside quantities, α and d, are sometimes referred to as the extremes, while the two middle quantities, b and c, are called the means.

Instead of using the horizontal line to separate numerator and denominator, it is sometimes convenient to write complex fractions in the forms

$$
a / \frac{b}{c}, \quad \frac{a}{b} / x, \quad \frac{a}{b} / \frac{c}{d}
$$

115. An algebraical fraction has been defined in Art. 101 as the result obtained by dividing the numerator by the denominator.

Thus

$$
\frac{a}{\frac{b}{d}}=\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c} .
$$

The student should notice the following particular cases, and should be able to write down the results readily.

$$
\begin{aligned}
& \frac{1}{\frac{a}{b}}=1 \div \frac{a}{b}=1 \times \frac{b}{a}=\frac{b}{a} \\
& \frac{a}{\frac{1}{b}}=a \div \frac{1}{b}=a \times b=a b .
\end{aligned}
$$

116. The following examples illustrate the simplification of complex fractions.
Example 1. Simplify $\frac{x+\frac{a^{2}}{x}}{x-\frac{a^{4}}{x^{3}}}$.
The expression $=\left(x+\frac{a^{2}}{x}\right) \div\left(x-\frac{a^{4}}{x^{3}}\right)=\frac{x^{2}+a^{2}}{x} \div \frac{x^{4}-\alpha^{4}}{x^{3}}$

$$
=\frac{x^{2}+a^{2}}{x} \times \frac{x^{3}}{x^{4}-a^{4}}=\frac{x^{2}}{x^{2}-a^{2}} .
$$

Example 2. Simplify $\frac{\frac{3}{\alpha}+\frac{\alpha}{3}-2}{\frac{\alpha}{6}+\frac{1}{2}-\frac{3}{\alpha}}$.
Here the reduction may be simply effected by multiplying the fractions above and below by $6 a$, which is the L.C.M. of the denominators.
Thus the expression $=\frac{18+2 \alpha^{2}-12 a}{a^{2}+3 a-18}$

$$
=\frac{2\left(\alpha^{2}-6 a+9\right)}{(a+6)(\alpha-3)}=\frac{2(a-3)}{a+6} .
$$

Example 3. Simplify $\frac{\frac{a^{2}+b^{2}}{a^{2}-b^{2}}-\frac{a^{2}-b^{2}}{a^{2}+b^{2}}}{\frac{a+b}{a-b}-\frac{a-b}{a+b}}$.
The numerator $=\frac{\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)}=\frac{4 a^{2} b^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)}$;
similarly the denominator $=\frac{4 a b}{(a+b)(a-b)}$.

$$
\begin{aligned}
\text { Hence the fraction } & =\frac{4 a^{2} b^{2}}{\left(a^{2}+3^{2}\right)\left(\alpha^{2}-b^{2}\right)} \div \frac{4 a b}{(a+b)(a-b)} \\
& =\frac{4 a^{2} b^{2}}{\left(a^{2}+b^{2}\right)\left(\alpha^{2}-b^{2}\right)} \times \frac{(a+b)(a-b)}{4 a b} \\
& =\frac{a b}{a^{2}+b^{2}} .
\end{aligned}
$$

117. In the case of fractions like the following, called Continued Fractions, wa begin from the lowest fraction, and simplify step by step.

Example. Find the value of $\frac{1}{4-\frac{3}{2+\frac{x}{1-x}}}$.

$$
\begin{aligned}
\text { The expression }=\frac{1}{4-\frac{3}{\frac{2-2 x+x}{1-x}}} & =\frac{1}{4-\frac{3(1-x)}{2-x}}=\frac{1}{\frac{8-4 x-3+3 x}{2-x}} \\
& =\frac{1}{\frac{5-x}{2-x}}=\frac{2-x}{5-x} .
\end{aligned}
$$

EXAMPLES XV. g.

Find the value of

1. $\frac{1}{x+\frac{y}{z}}$.
2. $\frac{a}{b-\frac{c}{d}}$.
3. $\frac{1-a}{\frac{1}{a^{2}}-1}$.
4. $\frac{b}{\frac{1}{1-a}}$.
5. $\frac{\frac{a}{x}-\frac{x}{a}}{\frac{1}{x}-\frac{1}{a}}$.
6. $\frac{\frac{1}{x^{2}}-\frac{1}{y^{2}}}{\frac{y}{x}-\frac{x}{y}}$.
7. $\frac{a-\frac{b}{d}}{\frac{a}{b}-\frac{1}{d}}$.
8. $\frac{\frac{p}{q}-r}{\frac{1}{p q}-\frac{r}{p^{2}}}$.
9. $\frac{a+\frac{6}{a}-5}{1+\frac{8}{a^{2}}-\frac{6}{a}}$.
10. $\frac{y-3+\frac{y^{2}}{3}}{y-\frac{9}{y}+3}$.
11.

$\frac{\frac{1}{n}-\frac{3}{n^{2}}-\frac{4}{n^{3}}}{n-\frac{16}{n}}$
12. $\frac{x-2+\frac{6}{x+3}}{x-4+\frac{12}{x+3}}$.
13. $\frac{b-2-\frac{6}{b+3}}{b-4+\frac{6}{b+3}}$.
14. $\frac{\frac{a}{b^{2}-\frac{b}{a^{2}}}}{\frac{1}{a^{2}}+\frac{1}{a b}+\frac{1}{b^{2}}}$.
15. $\frac{\frac{c+d}{c-d}-\frac{c-d}{c+d}}{\frac{c+d}{c-d}+\frac{c-d}{c+d}}$.
16. $\frac{a-\frac{a-b}{1-a b}}{1-\frac{a(a-b)}{1-a b}}$.
17. $\frac{\frac{x+3}{7}-\frac{x+3}{x+4}}{\frac{x-3}{4}+\frac{x-3}{x-1}}$.
18. $1+\frac{1}{1+\frac{1}{a}}$.
19. $x+\frac{1}{x-\frac{1}{x}}$.
20. $2-\frac{3}{4-\frac{c}{d}}$.
21. $\frac{x}{1+\frac{x}{1-\frac{1}{x}}}$
22. $\frac{1}{x+\frac{1}{x+\frac{2}{x}}}$
23. $\frac{1}{1-\frac{1}{1-\frac{1}{y}}}$.
24. $\frac{1-x^{2}}{2-\frac{x}{1-\frac{1}{1+x}}}$.
25.

26. $\frac{a}{b-\frac{c}{d-\frac{e}{f}}}$.
28. $\frac{3 \alpha-2 c}{3 a-2 c-\frac{3 a}{1-\frac{3(a-c)}{3 a-2 c}}}$.
27. $\frac{x^{2}-1}{2 x^{2}-\frac{4 x^{2}-1}{1+\frac{x}{x-1}}}$

N

Miscellaneous Fractions.

118. The following exercise contains miscellaneous examples which illustrate most of the processes connected with fractions.

EXAMPLES XV. h.

Simplify the following fractions :

1. $\frac{1-x^{3}}{1+2 x+2 x^{2}+x^{3}}$.
2. $\frac{12 x^{2}+x-1}{1-8 x+16 x^{2}} \div \frac{1+6 x+9 x^{2}}{16 x^{2}-1}$.
3. $\frac{a+b}{a-b}+\frac{4 a b}{b^{2}-a^{2}}$
4. $\frac{a+b}{a^{2}-a b-2 b^{2}-\frac{2 a}{a^{2}-4 b^{2}}}$
5. $\frac{x^{3}-1}{x-1}-\frac{x^{4}+x^{2}+1}{x^{2}+x+1}$.
6. $\frac{(x+y)^{2}}{x-y}-\frac{(x-y)^{2}}{x+y}$.
7. $\frac{a b x^{2}-a c x+b x y-c y}{a x^{2}+x y-a x-y}$.
8. $\frac{1}{x}\left(\frac{a}{a-x}-\frac{a}{a+3 x}\right)-\frac{3}{a+3 x}$.
9. $\frac{2}{x^{2}-6 x+8}$
$\frac{3}{11 x+28}+\frac{5}{x^{2}-9 x+14}$.
10. $\frac{3 a-\frac{1}{3 a}}{3 a+1} \times \frac{a}{3 a-1}$.
11. $\frac{\frac{x^{2}+a^{2}}{x}-a}{a^{3}+x^{3}}+\frac{\frac{1}{x}}{x+a}$.
12. $\frac{1}{1-\frac{x}{x-1}}-\frac{1}{\frac{x}{x+1}-1}$.
13. $\frac{2 x^{2}-\frac{7 x^{2}-27}{x-1}}{3 x^{2}-\frac{3\left(x^{2}-27 x+54\right)}{1-x}}$.
14. $\frac{c d\left(a^{2}+b^{2}\right)+a b\left(c^{2}+d^{2}\right)}{c d\left(a^{2}-b^{2}\right)+a b\left(c^{2}-d^{2}\right)}$.
15. $\left(\frac{x}{1+x^{2}} \times \frac{1+x}{x^{2}}\right)-\frac{1}{x^{2}}$.
16.

$\frac{1}{x^{3}-3 a x^{2}+4 a^{3}}-\frac{1}{x^{3}-a x^{2}-4 a^{2} x+4 a^{3}}$.
17. $\frac{\frac{a^{2}+4}{2}-a}{\frac{2}{a}-1} \times \frac{a^{2}-4}{a^{3}+8}$.
18. $\frac{\frac{2}{a^{2}}\left(4 a^{2}-\frac{1}{9}\right)}{\frac{1}{a}+6}+\frac{1}{3}$.
19. $\frac{2 x^{3}+x^{2}-3 x}{35 x^{2}+24 x-35} \times \frac{5 x^{2}-8 x-21}{x^{3}+7 x^{2}-8 x} \div \frac{2 x^{2}-3 x-9}{7 x^{2}+51 x-40}$.
20.

$$
\frac{q+r-p}{(p-q)(p-r)}+\frac{r+p-q}{(q-r)(q-p)}+\frac{p+q-r}{(r-p)(r-q)} .
$$

21. $\left\{\left(\frac{x+y}{x-y}+\frac{x-y}{x+y}\right) \div\left(\frac{x+y}{x-y}-\frac{x-y}{x+y}\right)\right\}-\frac{x^{3}+x^{2} y+x y^{2}+y^{3}}{2 x^{2} y+2 x y^{2}}$.
22. $\frac{a^{2}-(b-c)^{2}}{(c+a)^{2}-b^{2}}+\frac{b^{2}-(c-a)^{2}}{(a+b)^{2}-c^{2}}+\frac{c^{2}-(a-b)^{2}}{(b+c)^{2}-a^{2}}$.
23. $\frac{a^{3}-1}{a^{2}+a-6} \div\left[\frac{a^{2}-4 a+3}{a^{2}-4 a+4} \div\left\{\frac{a^{2}-9}{a^{4}+a^{2}+1} \div \frac{a^{2}-a-2}{a^{3}+1}\right\}\right]$.
24. $\left(\frac{1}{2 a}+\frac{1}{2 a-x}\right)\left(\frac{1}{3 a}-\frac{1}{3 a-x}\right)-\frac{x^{2}-4 a x}{6 a^{2}(x-2 a)(x-3 a)}$.
25.

$$
\frac{4 a b^{2}}{2 a^{4}+32 b^{4}}+\frac{1}{8 a+16 b}-\frac{a}{4 a^{2}+16 b^{2}}-\frac{1}{8(2 b-a)} .
$$

26. $\frac{3 b^{2}+b}{6 b^{2}-1-b}+\frac{2 b-7}{1-2 b}+\frac{2 b^{2}-3 b}{4 b^{2}-8 b+3}+3$.
27.

28. $\frac{\frac{x^{4}+x^{3} y+x^{2} y^{2}}{\left(x^{2}-y^{2}\right)^{3}} \times\left(1+\frac{y}{x}\right)^{2}}{\left(1-\frac{y^{3}}{x^{3}}\right) \div\left(\frac{y}{x^{2}}+\frac{1}{x}\right)}$.
29. $\frac{m^{2}+\frac{1}{m^{2}}+1}{m^{2}-\frac{1}{m^{4}}}-\frac{m^{3}+m}{\frac{1}{m}-m^{3}}$.

MISCELLANEOUS EXAMPLES III.

The following Miscellaneous Examples on Fractions have been selected from Examination Papers set by the Science and Art Department in Mathematics, Stage I.

1. Simplify $\frac{x^{2}-8 x+7}{x^{2}-6 x-7}$.

Reduce to their simplest forms :
2. $\frac{1}{a-2}+\frac{1}{a+2}-\frac{4}{a^{2}-4}$.
3. $\frac{(m-a)(m+a)+n(2 m+n)}{m+n+a}$.
4. $\frac{x+2 y}{x-2 y}-\frac{x-2 y}{x+2 y}$.
5. $\left(1-\frac{2 x}{1+2 x}\right)\left(1+\frac{2 x}{1-2 x}\right)$.
6. Reduce to its lowest terms $\frac{2 x^{4}-3 x^{3}-47 x^{2}-45 x+18}{3 x^{4}-13 x^{3}-45 x^{2}+94 x-24}$.

Simplify the following expressions:
7. $\frac{1}{x-1}-\frac{x}{x^{2}+x+1}$.
8. $\frac{2}{y+3 x}-\frac{1}{y-3 x}+\frac{9 x}{y^{2}-9 x^{2}}$
9. $\left(\frac{x-y}{x+y}+\frac{x+y}{x-y}\right) \div\left(\frac{x}{y}+\frac{y}{x}\right)$.
10. $\frac{1}{1-\frac{x}{y}}+\frac{y}{1-\frac{y}{x}}$.

Reduce the following expressions to their simplest forms:
11. $\frac{x-a}{\frac{1}{a}-\frac{1}{b}} \times \frac{a-b}{1-\frac{a}{x}}$.
12. $\left(\frac{1}{2}+\frac{1}{3 \alpha}\right) \div\left(9 a-\frac{4}{a}\right)$.
13. $\frac{1+\frac{a}{b}}{\frac{b}{a}-1} \div \frac{a^{2}-b^{2}}{1-\frac{2 b}{a}+\frac{l^{2}}{a^{2}}}$.

Reduce the following fractions to their lowest terms:
15. $\frac{x^{4}-13 x^{2}+36}{x^{4}-x^{3}-7 x^{2}+x+6}$.
16. $\frac{x^{8}+x^{4} y^{4}+y^{8}}{x^{6}-y^{6}}$.

Simplify the following expressions :
17.
$\frac{\frac{c}{a}}{\left(1-\frac{b}{a}\right)\left(1-\frac{\alpha}{c}\right)}-\frac{\frac{a}{c}}{\left(\frac{b}{a}-1\right)\left(\frac{a}{c}-1\right)}$
18. $\left(1-\frac{x+1}{x^{2}-4 x+5}\right)\left(1-\frac{2 x-4}{x^{2}-2 x+1}\right)$.

Reduce to their simplest forms:
19. $\left\{1-\frac{4 x y}{(x+y)^{2}}\right\} \div \frac{x^{2}-y^{2}}{(x+y)^{3}} . \quad$ 20. $\frac{2 x}{1-\frac{x^{2}}{y^{2}}}+\frac{y}{1-\frac{y}{x}}$.
21. $\left(x^{2}-\frac{2 x}{x-1}\right) \times \frac{x^{3}-1}{x^{2}-1} \div\left(x^{3}+x^{2}+x\right)$.

CHAPTER XVI.

Harder Equations.

119. Some of the equations in this chapter will serve as a useful exercise for revision of the methods already explained; but we also add others presenting more difficulty, the solution of which will often be facilitated by some special artifice.

The following examples worked in full will sufficiently illustrate the most useful methods.

$$
\text { Example 1. Solve } \frac{6 x-3}{2 x+7}=\frac{3 x-2}{x+5}
$$

Clearing of fractions, we have

$$
\begin{aligned}
(6 x-3)(x+5) & =(3 x-2)(2 x+7), \\
6 x^{2}+27 x-15 & =6 x^{2}+17 x-14 ; \\
\therefore 10 x & =1 ; \\
\therefore x & =\frac{1}{10} .
\end{aligned}
$$

Note. By a simple reduction many equations can be brought to the form in which the above equation is given. When this is the case, the necessary simplification is readily completed by multiplying up, or " multiplying across", as it is sometimes called.

Example 2. Solve $\frac{8 x+23}{20}-\frac{5 x+2}{3 x+4}=\frac{2 x+3}{5}-1$.
Multiplying by 20 , we have

$$
8 x+23-\frac{20(5 x+2)}{3 x+4}=8 x+12-20 .
$$

By transposition,

$$
31=\frac{20(5 x+2)}{3 x+4}
$$

Multiplying across, $\quad 93 x+124=20(5 x+2)$,

$$
\begin{aligned}
84 & =7 x ; \\
\therefore \quad x & =12 .
\end{aligned}
$$

120. When two or more fractions have the same denominator, they should be taken together and simplified.

Example 1. Solve $\frac{24-5 x}{x-2}+\frac{8 x-49}{4-x}=\frac{28}{x-2}-13$.
By transposition, we have

$$
\begin{aligned}
\frac{8 x-49}{4-x}+13 & =\frac{28-(24-5 x)}{x-2} ; \\
\therefore \frac{3-5 x}{4-x} & =\frac{4+5 x}{x-2} .
\end{aligned}
$$

Multiplying across, we have

$$
\begin{aligned}
3 x-5 x^{2}-6+10 x & =16-4 x+20 x-5 x^{2} \\
-3 x & =22 \\
\therefore x & =-\frac{22}{3}
\end{aligned}
$$

that is,

Example 2. Solve $\frac{x-8}{x-10}+\frac{x-4}{x-6}=\frac{x-5}{x-7}+\frac{x-7}{x-9}$.
This equation might be solved by at once clearing of fractions, but the work would be laborious. The solution will be much simplified by proceeding as follows.

The equation may be written in the form

$$
\frac{(x-10)+2}{x-10}+\frac{(x-6)+2}{x-6}=\frac{(x-7)+2}{x-7}+\frac{(x-9)+2}{x-9} ;
$$

whence we have
which gives

$$
1+\frac{2}{x-10}+1+\frac{2}{x-6}=1+\frac{2}{x-7}+1+\frac{2}{x-9}
$$

Transposing,

$$
\frac{1}{x-10}+\frac{1}{x-6}=\frac{1}{x-7}+\frac{1}{x-9} .
$$

$$
\begin{aligned}
& \frac{1}{x-10}-\frac{1}{x-7} \\
= & \frac{1}{x-9}-\frac{1}{x-6} ; \\
\therefore \quad & \frac{3}{(x-10)(x-7)}=\frac{3}{(x-9)(x-6)} .
\end{aligned}
$$

Hence, since the numerators are equal, the denominators must be equal ;
that is,

$$
\begin{aligned}
(x-10)(x-7) & =(x-9)(x-6) \\
x^{2}-17 x+70 & =x^{2}-15 x+54 \\
\therefore 16 & =2 x \\
\therefore x & =8
\end{aligned}
$$

121. The following example illustrates the method of solving simple equations with decimal coefficients.

Example. $\quad \frac{(\cdot 3 x-2)(\cdot 3 x-1)}{2 x-1}-\frac{1}{6}(\cdot 3 x-2)=\cdot 4 x-2$.
Multiplying through by 10 , the equation may be written

$$
\frac{(3 x-20)(3 x-10)}{2 x-10}-\frac{1}{6}(3 x-20)=4 x-20 .
$$

Multiplying by $6(x-5)$, we have

$$
\begin{gathered}
3(3 x-20)(3 x-10)-(x-5)(3 x-20)=6(4 x-20)(x-5), \\
\text { or, } \quad 27 x^{2}-270 x+600-3 x^{2}+35 x-100=24 x^{2}-240 x+600 ; \\
\therefore \quad 5 x=100 ; \\
\therefore \quad x=20 .
\end{gathered}
$$

Sometimes it is found more simple to work entirely in decimals, as illustrated in Art. 60.

EXAMPLES XVI. a.

Solve the following equations :

1. $\frac{3}{\overline{\mathrm{\jmath} x-9}}=\frac{1}{4 x-10}$.
2. $\frac{7}{6 x-17}=\frac{3}{4 x-13}$.
3. $\frac{7}{9}=\frac{3-4 x}{4-5 x}$.
4. $\frac{1}{6-5 x}+\frac{4}{17 x+3}=0$.
5. $\frac{5 x-8}{x-4}=\frac{5 x+14}{x+7}$.
6. $\frac{8 x-1}{6 x+2}=\frac{4 x-3}{3 x-1}$.
7. $\frac{22 x-12}{8 x-5}=2+\frac{3 x+7}{4 x+8}$
8. $\frac{9 x-22}{2 x-5}-\frac{3 x-5}{2 x-7}=3$.
9. $\frac{8 x-19}{4 x-10}-\frac{1}{2}=\frac{3 x-4}{2 x+1}$
10. $\frac{7 x+2}{3(x-1)}=\frac{1}{3}+\frac{6 x-1}{3 x+1}$.
11. $\frac{x-5}{2}+\frac{2 x-1}{3 x+2}=\frac{5 x-1}{10}-1 \frac{2}{5}$.
12. $\frac{5 x-17}{13-4 x}+\frac{2 x-11}{14}-\frac{23}{42}=\frac{3 x-7}{21}$.
13. $x-\frac{4 x-3}{7 x+4}-\frac{1-9 x}{6}=\frac{4 x+3}{8}-\frac{1}{24}+2 x$.
14. $\frac{3}{x+1}-\frac{2 \frac{1}{3}}{x+2}=\frac{1}{x+3}-\frac{1}{3 x+6}$. 15. $\frac{3 \frac{1}{2}}{x-4}-\frac{18}{3 x-18}=\frac{7}{4 x-16}-\frac{4}{x-6}$.

Solve the following equations :
16. $\frac{1}{x+6}+\frac{1}{3 x+12}=\frac{3}{2 x+10}-\frac{1}{6(x+4)}$.
17. $\frac{x-1}{x-2}-\frac{x-5}{x-6}=\frac{x-3}{x-4}-\frac{x-7}{x-8}$.
18. $\frac{1}{x-9}+\frac{1}{x-17}=\frac{1}{x-11}+\frac{1}{x-15}$.
19. $\frac{1}{2 x-1}+\frac{1}{2 x-7}=\frac{1}{2 x-3}+\frac{1}{2 x-5}$.
20. $\frac{x-1}{x-2}-\frac{x}{x-1}=\frac{x-4}{x-5}-\frac{x-3}{x-4}$.
21. $\frac{5 x-64}{x-13}-\frac{4 x-55}{x-14}=\frac{2 x-11}{x-6}-\frac{x-6}{x-7}$.
22. $\frac{5 x+31}{x+6}-\frac{2 x+9}{x+5}=\frac{x-6}{x-5}+\frac{2 x-13}{x-6}$.
23. $\frac{12 x+1}{3 x-1}+\frac{5}{1-9 x^{2}}=\frac{11+12 x}{1+3 x}$.
24. $\frac{5 x^{2}}{x^{2}-9}-\frac{x+3}{x-3}=5-\frac{x-3}{x+3} . \quad$ 25. $\quad \begin{aligned} & 2 x-3 \\ & -3 x-4\end{aligned}=\frac{4 x-6}{.06 x-\cdot 07}$.
26. $\frac{3 x-1}{\cdot 5 x-4}=\frac{5+1 \cdot 2 x}{2 x-\cdot 1} . \quad$ 27. $\frac{1-1 \cdot 4 x}{2+x}=\frac{7(x-1)}{\cdot 1-5 x}$.
28. $(2 x+1 \cdot 5)(3 x-2 \cdot 25)=(2 x-1 \cdot 125)(3 x+1 \cdot 25)$.
29. $\frac{x-2}{.05}-\frac{x-4}{.0625}=56$.
30. $\cdot 08 \dot{3}(x-\cdot 625)=\cdot 0 \dot{0}(x-\cdot 59375)$.

Literal Equations.

122. In the equations we have discussed hitherto the coefficients have been numerical quantities. When equations involve literal coefficients, these are supposed to be known, and will appear in the solution.

Example 1. Solve $(x+a)(x+b)-c(a+c)=(x-c)(x+c)+a b$.
Multiplying out, we have

$$
x^{2}+a x+b x+a b-a c-c^{2}=x^{2}-c^{2}+a b ;
$$

whence

$$
\begin{aligned}
a x+b x & =a c, \\
(a+b) x & =a c ; \\
\therefore x & =\frac{a c}{a+b} .
\end{aligned}
$$

Example 2. Solve $\frac{a}{x-a}-\frac{b}{x-b}=\frac{a-b}{x-c}$.
Simplifying the left side, we have

$$
\begin{aligned}
\frac{a(x-b)-b(x-a)}{(x-a)(x-b)} & =\frac{a-b}{x-c} \\
\frac{(a-b) x}{(x-a)(x-b)} & =\frac{a-b}{x-c} \\
\frac{x}{(x-a)(x-b)} & =\frac{1}{x-c}
\end{aligned}
$$

Multiplying across, $x^{2}-c x=x^{2}-a x-b x+a b$,

$$
\begin{aligned}
a x+b x-c x & =a b \\
(a+b-c) x & =a b \\
\therefore \quad x & =\frac{a b}{a+b-c} .
\end{aligned}
$$

Example 3. Solve the simultaneous equations:

$$
\begin{align*}
& p x+q y=r \tag{2}
\end{align*}
$$

To eliminate y, multiply (1) by q and (2) by b;
thus

$$
\begin{aligned}
& a q x-b q y=c q \\
& b p x+b q y=b r
\end{aligned}
$$

By addition,

$$
\begin{aligned}
(a q+b p) x & =c q+b r \\
\therefore \quad x & =\frac{c q+b r}{a q+b p} .
\end{aligned}
$$

We might obtain y by substituting this value of x in either of the equations (1) or (2); but y is more conveniently found by eliminating x, as follows.

Multiplying (1) by p and (2) by a, we have

$$
\begin{aligned}
& a p x-b p y=c p, \\
& a p x+a q y=a r .
\end{aligned}
$$

By subtraction,

$$
(a q+b p) y=a r-c p ;
$$

$$
y=\frac{a r-c p}{a q+b p} .
$$

EXAMPLES XVI. b.

Solve the following equations:

1. $a x+b^{2}=a^{2}-b x$.
2. $x^{2}-\alpha^{2}=(2 \alpha-x)^{2}$.
3. $a^{2}(a-x)+a b x=b^{2}(x-b)$.
4. $(b+1)(x+a)=(b-1)(x-a)$.
5. $a(x+b)-b^{2}=a^{2}-b(a-x)$.
6. $\quad c^{2} x-d^{3}=d^{2} x+c^{3}$.
7. $a(x-a)+b(x-b)+c(x-c)=2(a b+b c+c a)$.
8. $\frac{a^{2}}{x}-b=\frac{b^{2}}{x}+a$.
9. $\frac{x}{2 a}=\frac{x}{b}+\frac{1}{b^{2}}-\frac{1}{4 a^{2}}$.
10. $x+(x-a)(x-b)+a^{2}+b^{2}=b+x^{2}-a(b-1)$.
11.

$\frac{2 x-a}{b}-\frac{3 x-b}{a}=\frac{3 a^{2}-8 \dot{b}^{2}}{a b}$.
12. $\frac{a-x}{a-b}-\frac{b-x}{a+b}=\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$.
13. $\frac{a x-b}{c}+\frac{b x-c}{a}=\frac{a-c x}{b}$.
14. $\frac{x+a-b}{x+b+c}=\frac{x+b-c}{x+a+b}$.
15. $p(p-x)-\frac{p}{q}(x-q)^{2}--p(p-q)+p q\left(\frac{x}{q}-1\right)^{2}=0$.
16. $\frac{a x}{a+c}+2 a c-a^{2}=\frac{c x}{a-c}-c^{2}$.
17. $\frac{x+m}{x-n}+\frac{x+n}{x-m}=2$.

Solve the following simultaneous equations:
18.
$x-y=a+b$, $a x+b y=0$.
19. $c x-d y=c^{2}+d^{2}$, $x+y=2 c$.
20. $a x=b y$,
$\frac{x}{2}+\frac{y}{3}=a+b$, $\frac{x}{a}+\frac{y}{b}=5$.
22. $\frac{a}{x}-\frac{b}{y}=0$,
23. $\frac{x+y}{x-y}=\frac{a}{b}$,
$\frac{x}{a}+\frac{y}{b}=2$.

$$
\frac{x-y}{a+b}=2 b
$$

24.

$\frac{x}{b}-\frac{y}{a}=\frac{a}{b}+\frac{b}{a}$,
$a(a+x):=b(b-y)$.
25. $\frac{x+y}{p}-\frac{x-y}{q}=0$.

$$
\frac{x-y}{2 p}+\frac{x+y}{2 q}=p^{2}+q^{2}
$$

26. $\frac{2 x-b}{a}=\frac{2 y+a}{b}=\frac{3 x+y}{a+2 b}$.
27. $\frac{a x+b y}{b x+a y}=\frac{1}{2}=\frac{a^{2}-b^{2}}{b x+a y}$.

MISCELLANEOUS EXAMPLES IV.

The following Miscellaneous Simple Equations lave been selected from Examination Papers set by the Science und Art Depurtment in Mathematics, Stage I.

Solve the equations :

1. $x-\frac{3}{5}-\frac{5(x-2)}{4}=\frac{3}{2}\left(x-\frac{1}{10}\right)$.
2. $\frac{7 x-28}{3}-3 \frac{1}{4}+\frac{4 x-21}{7}=x-7 \frac{1}{4}-\frac{9-7 x}{8}$.
3. $7\left(x+\frac{1}{3}\right)-5 x\left(\frac{1}{3 x}+\frac{1}{2 \frac{1}{2}}\right)=4$. 4. $\quad \frac{1}{x-3}-\frac{1}{x-7}=\frac{1}{x-2}-\frac{1}{x-6}$.
4. $(2-3 x)\left(4-\frac{5}{x}\right)=(3-2 x)\left(6-\frac{7}{x}\right)$.
5. $\frac{1}{3}(0.75-x)+\frac{1}{5}(0.47+2 x)=\left(3-\frac{1}{15}\right) x$.
6. $x-\frac{2 x-0.3}{0.7}=\frac{5-x}{0.35}$.
7. $\quad \frac{x}{2}-\frac{0 \cdot 05 x-7 \cdot 5}{0 \cdot 6}=\frac{0 \cdot 25 x+3 \cdot 8}{0 \cdot 3}$.

Solve the following literal equations:
9. $a(x-a)+b(x-b)+2 a b=0 . \quad 10 . \quad \frac{b}{a}-\frac{d x}{c}=\frac{a x}{b}-\frac{c}{d}$.
11. $(a x+b)(b x-a)=a\left(b x^{2}-a\right)$.
12. $\frac{x+a}{a}+\frac{x}{x-\alpha}=\frac{x-a}{a}$.

Solve the following simultaneous equations:
13. $0.5 x+0.07 y=0.93$, $0.03 x-0.4 y=0.46$.
14. $3 \cdot 4 \cdot x-0 \cdot 02 y=0 \cdot 01$, $x+0.2 y=0.6$.
15. $2 x-7 y=0 \cdot 2$, $0 \cdot 2 x+0 \cdot 1 \overline{5} y=1 \cdot 72$.
17. $(x+y)^{2}-(x-y)^{2}=352$, $x(y+5)=143$.
19. The expression $a x^{2}+b x-30$ is equal to 240 when $x=5$, and is equal to 100 when $x=-2$; find the values of a and b.

CHAPTER XVII.

Harder Problems.

123. In previous chapters we have given collections of problems which lead to simple equations. We add here a few examples of somewhat greater difficulty.

Example 1. If the numerator of a fraction is increased by 2 and the denominator by 1 , it becomes equal to $\frac{5}{3}$; and if the numerator and denominator are each diminished by 1 , it becomes equal to $\frac{1}{2}$: find the fraction.

Let x be the numerator of the fraction, y the denominator ; then the fraction is $\frac{x}{y}$.

From the first supposition,
from the second,

$$
\begin{align*}
& \frac{x+2}{y+1}=\frac{5}{8} . \tag{1}\\
& \frac{x-1}{y-1}=\frac{1}{2} . \tag{2}
\end{align*}
$$

From the first equation, and from the second, $8 x-5 y=-11$, whence $x=8, y=15$.

Thus the fraction is $\frac{8}{15}$.
Example 2. At what time between 4 and 5 o'clock will the minute-hand of a watch be 13 minutes in advance of the hour-hand?

Let x denote the required number of minutes after 4 o'clock; then, as the minute-hand travels twelve times as fast as the hourhand, the hour-hand will move over $\frac{x}{12}$ minute-divisions in x minutes. At 4 o'clock the minute-hand is 20 divisions behind the hour-hand, and finally the minute-hand is 13 divisions in advance; therefore the minute-hand moves over $20+13$, or 33 divisions more than the hourhand.

Hence

$$
\begin{aligned}
x & =\frac{x}{12}+33, \\
\frac{11}{12} x & =33 ; \\
\therefore \quad x & =36 .
\end{aligned}
$$

Thus the time is 36 minutes past 4 .

If the question be asked as follows: "At what times between 4 and 5 o'clock will there be 13 minutes between the two hands?" we must also take into consideration the case when the minute-hand is $\mathbf{1 3}$ divisions behind the hour-hand. In this case the minute-hand gains $20-13$, or 7 divisions.

$$
\therefore \quad x=\frac{x}{12}+7 ; \quad \text { whence } \quad x=7 \frac{7}{11} \text {. }
$$

Therefore the times are $7 \frac{7^{\prime}}{11}$ past 4 , and 36^{\prime} past 4.
Example 3. A grocer buys 15 lbs . of figs and 28 lbs . of currants for $£ 1.1 s .8 d$.; by selling the figs at a loss of 10 per cent., and the currants at a gain of 30 per cent., he clears $2 s .6 \mathrm{~d}$. on his outlay; how much per pound did he pay for each ?

Let x, y denote the number of pence in the price of a pound of figs and currants respectively ; then the outlay is

$$
\begin{align*}
& 15 x+28 y \text { pence. } \\
& 15 x+28 y=260 . \tag{1}
\end{align*}
$$

Therefore
The loss upon the figs is $\frac{1}{10} \times 15 x$ pence, and the gain upon the currants is $\frac{3}{10} \times 28 y$ pence; therefore the total gain is

$$
\begin{align*}
& \frac{42 y}{5}-\frac{3 x}{2} \text { pence; } \\
\therefore \quad & \frac{42 y}{5}-\frac{3 x}{2}=30 ; \\
& 28 y-5 x=100 . . \tag{2}
\end{align*}
$$

that is,
From (1) and (2) we find that $x=8$, and $y=5$; that is, the figs cost $8 d$. a pound, and the currants cost $5 d$. a pound.

Example 4. Two persons A and B start simultaneously from two places, c miles apart, and walk in the same direction. A travels at the rate of p miles an hour, and B at the rate of q miles; how far will A have walked before he overtakes B ?

Suppose A has walked x miles, then B has walked $x-c$ miles.
A walking at the rate of p miles an hour will travel x miles in $\frac{x}{p}$ hours; and B will travel $x-c$ miles in $\frac{x-c}{q}$ hours; these two times being equal, we have

$$
\begin{aligned}
\frac{x}{p} & =\frac{x-c}{q}, \\
q x & =p x-p c ;
\end{aligned}
$$

whence $x=\frac{p c}{p-q} . \quad \therefore \quad A$ has travelled $\frac{p c}{p-q}$ miles.

Example 5. A train travelled a certain distance at a uniform rate. Had the speed been 6 miles an hour more, the journey would have occupied 4 hours less; and had the speed been 6 miles an hour less, the journey would have occupied 6 hours more. Find the distance.

Let the speed of the train be x miles per hour, and let the time occupied be y hours; then the distance traversed will be represented by $x y$ miles.

On the first supposition the speed per hour is $x+6$ miles, and the time taken is $y-4$ hours. In this case the distance traversed will be represented by $(x+6)(y-4)$ miles.

On the second supposition the distance traversed will be represented by $(x-6)(y+6)$ miles.

All these expressions for the distance must be equal ;

$$
\therefore x y=(x+6)(y-4)=(x-6)(y+6) .
$$

From these equations we have
or

$$
\begin{align*}
x y= & x y+6 y-4 x-24, \\
& 6 y-4 x=24 \ldots \ldots . \tag{1}
\end{align*}
$$

and
or

$$
\begin{align*}
x y= & x y-6 y+6 x-36, \\
& 6 x-6 y=36 \ldots \ldots .
\end{align*}
$$

From (1) and (2) we obtain $x=30, y=24$.
Hence the distance is 720 miles.

EXAMPLES XVII.

1. If the numerator of a fraction is increased by 5 it reduces to $\frac{2}{3}$, and if the denominator is increased by 9 it reduces to $\frac{1}{3}$: find the fraction.
2. Find a fraction such that it reduces to $\frac{3}{5}$ if 7 be subtracted from its denominator, and reduces to $\frac{3}{8}$ on subtracting 3 from its numerator.
3. If unity is taken from the denominator of a fraction it reduces to $\frac{1}{2}$; if 3 is added to the numerator it reduces to $\frac{4}{7}$: required the fraction.
4. Find a fraction which becomes $\frac{3}{4}$ on adding 5 to the numerator and subtracting 1 from the denominator, and reduces to $\frac{1}{3}$ on subtracting 4 from the numerator and adding 7 to the denominator.
5. If 9 is added to the numerator a certain fraction will be increased by $\frac{1}{3}$; if 6 is taken from the denominator the fraction reduces to $\frac{2}{3}$; required the fraction.
6. At what time between 9 and 10 o'clock are the hands of a watch together?
7. When are the hands of a clock 8 minutes apart between the hours of 5 and 6 ?
8. At what time between 10 and 11 o'clock is the hour-hand six minutes ahead of the minute-hand?
9. At what time between 1 and 2 o'clock are the hands of a watch in the same straight line?
10. When are the hands of a clock at right angles between the hours of 5 and 6 ?
11. At what times between 12 and 1 o'clock are the hands of a watch at right angles?
12. A person buys 20 yards of cloth and 25 yards of canvas for £1. 17s. $6 d$. By selling the cloth at a gain of 15 per cent. and the canvas at a gain of 20 per cent. he clears $6 s .3 d$.: find the price of each per yard.
13. A dealer spends $£ 695$ in buying horses at $£ 25$ each and cows at $£ 20$ each ; through disease he loses 20 per cent. of the horses and 25 per cent. of the cows. By selling the animals at the price he gave for them he receives $£ 540$; find how many of each kind he bought.
14. The population of a certain district is 33000 , of whom 835 can neither read nor write. These consist of 2 per cent. of all the males and 3 per cent. of all the females: find the number of males and females.
15. Two persons C and D start simultaneously from two places a miles apart, and walk to meet each other ; if C walks p miles per hour, and D one mile per hour faster than C, how far will D have walked when they meet?
16. A can walk a miles per hour faster than B; supposing that he gives B a start of c miles, and that B walks n miles per hour, how far will A have walked when he overtakes B ?
17. A, B, C start from the same place at the rates of $a, a+b$, $a+2 b$ miles an hour respectively. B starts n hours after A, how long after B must C start in order that they may overtake A at the same instant, and how far will they then have walked?
18. Find the distance between two towns when by increasing the speed 7 miles per hour a train can perform the journey in 1 hour less, and by reducing the speed 5 miles per hour can perform the journey in 1 hour more.
19. A person buys a certain quantity of land. If he had bought 7 acres more each acre would have cost $£ 4$ less, and if each acre had cost $£ 18$ more he would have obtained 15 acres less : how much did he pay for the land?
20. A can walk half a mile per hour faster than B, and three quarters of a mile per hour faster than C. To walk a certain distance C takes three quarters of an hour more than B, and two hours more than A : find their rates of walking per hour.

MISCELLANEOUS EXAMPLES V.

The following Miscellaneous Problems have been selected from Examination Papers set by the Science and Art Department in Mathematics, Stage I.

1. Oranges are bought for half-a-crown a hundred ; some are sold at $3 . \%$. 6 r . a hundred, and the rest at $2 s .10 \frac{1}{2} d$. a hundred : the same profit is made, as if they had all been sold at $3 s$. $1 \frac{1}{2} d$. a hundred. Of a thousand oranges sold, how many fetch $3 s .6 d$. a hundred?
2. A man has 1000 apples for sale ; at first he sells so as to gain at the rate of 50 per cent. on the cost price; when he has done this for a time, the sale falls off, so he sells the remainder for what he can get, and finds that by doing so he loses at the rate of 10 per cent. If his total gain is at the rate of 29 per cent., how many apples did he sell for what he could get?
3. A sum of £23. 14s. is to be divided between A, B, and C : if B gets 20 per cent. more than A, and 25 per cent. more than C, how much does each get?
4. The sides of a triangle $A B C$ are together 61 miles long; $B C$ is $\frac{5}{6}$ th of $A B$, and three miles longer than $C A$: find the length of the sides severally.
5. A market-woman spent 10%. 10 d . in buying eggs, some at two a penny and others at 3 for twopence: she sold them for a sovereign, thereby gaining $\frac{1}{2} d$. on each egg. How many of each kind did she buy?
6. The circumference of the large wheel of a bicycle (1885) is $3 \frac{1}{2}$ times that of the small wheel : the small wheel makes 10 turns more than the large wheel in running 21 yards. Find the circumference of each wheel.
7. Find two numbers whose sum is 39 , and whose difference equals a third part of the greater.
8. Divide 279 into two parts such that one-third of the first part is less by 15 than one-fifth of the second part.
9. Find a number such that, when diminished by 3, one-fourth of the remainder may be greater by 2 than one-fifth of the original number.
10. A person spent $9 s$. in buying apples at the rate of $7 d$. a dozen, and oranges at the rate of 20 a shilling. If he had bought two-thirds as many apples and twice as many oranges, he would have had to pay $13 s .4 d$. How many of each did he buy?
11. Find the fraction which is equal to $\frac{3}{7}$ when 10 is added to its numerator, and which is equal to $\frac{1}{3}$ when 4 is subtracted from its denominator.
12. A man has 81 coins, some of them crowns and the rest shillings : if he exchanged the crowns for florins, and the shillings for half-crowns, he would neither gain nor lose. How many crowns had he?
13. If 10 yards of silk and 7 yards of satin cost $£ 5.6 \% .4 d$., and if 3 yards of the satin cost as much as 4 yards of the silk, find the price of a yard of each.
14. A man buys oranges at $6 d$. a dozen, and an equal number at ninepence a score : he sells them at ninepence a dozen, and makes a profit of $5 \% .6 \mathrm{~d}$. How many oranges did he buy?
15. A bill of $£ 13.12 \mathrm{~s} .6 \mathrm{~d}$. was paid with 40 coins, some of them half-crowns, and the others half-sovereigns ; find the number used of each kind.
16. Find the fraction which becomes equal to $\frac{1}{2}$ if its denominator be decreased by 6 , and becomes equal to $\frac{3}{4}$ if its numerator and denominator be each increased by 124.
17. A tradesman sends in a bill for $£ 12$, part of which is for labour, and the other part for materials. If the charge for labour had been twice what it was, and the charge for materials one-third of what it was, the amount of the bill would still have been $£ 12$. What was the charge for labour, and what for materials?
18. A certain number consisting of two digits, exceeds four times the sum of its digits by 3 : if the number be increased by 18 , the result is the same as if the number formed by reversing the digits were diminished by 18 . Find the number.
19. A number is divided into two parts : the difference between the parts is 5 , and two-thirds of the smaller part is less than threefourths of the larger part by 8 . Find the number.
20. A man bought two pairs of shoes, and one pair cost him $2 s$. more than the other pair. If he had paid 3 s . less for each pair, they would have cost him four-fifths of what he paid. How many shillings did each pair cost him?

CHAPTER XVIII.

Positive Integral Indices.

124. We have adopted the symbol a^{7} as an abbreviation for $a \times a \times a \times a \times a \times a \times a$, that is, for $a . a . a \ldots$ to seven factors.

From this it follows that
(1) $a^{7} \times a^{3}=(a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a) \times(a \cdot a \cdot a)$
$=a \cdot a \cdot a \ldots$ to $(7+3)$ factors

$$
=a^{7+3}=a^{10}
$$

(2)

$$
\begin{aligned}
a^{7} \div a^{3} & =(a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a) \div(a \cdot a \cdot a) \\
& =\frac{a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a}{a \cdot a \cdot a} \\
& =a \cdot a \cdot a \ldots \text { to }(7-3) \text { factors } \\
& =a^{7-3}=a^{4} .
\end{aligned}
$$

$$
\begin{equation*}
\left(a^{7}\right)^{3}=a^{7} \times a^{7} \times a^{7}=a^{7+7+7} \tag{3}
\end{equation*}
$$

$$
=a^{7 \dot{\times} 3}=a^{21}
$$

125. Of these important rules we shall now give general proofs for all cases when the indices are positive whole numbers.

Definition. When m is a positive integer, a^{m} stands for the product of m factors each equal to α.

Rule I. To prove that $\mathrm{a}^{\mathrm{m}} \times \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}+\mathrm{n}}$, when m and n are positive integers.

$$
\begin{aligned}
\text { By definition, } a^{m} & =a \cdot a \cdot a \ldots \ldots \text { to } m \text { factors; } \\
a^{n} & =a \cdot a \cdot a \ldots \ldots \text { to } n \text { factors ; }
\end{aligned}
$$

$\therefore \quad a^{m} \times a^{n}=(a . a . a \ldots$ to m factors $) \times(a . a . a \ldots$ to n factors $)$ $=a \cdot a \cdot a \ldots$ to $m+n$ factors $=a^{m+n}$, by definition.
Cor. If p is also a positive integer, then

$$
a^{m} \times a^{n} \times a^{p}=\alpha^{m+n+p} ;
$$

and so for any number of factors.

Rule II. To prove that $\mathrm{a}^{\mathrm{m}} \div \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}-\mathrm{n}}$, when m and n are positive integers, and $\mathrm{m}>\mathrm{n}$.

$$
\begin{aligned}
a^{m} \div a^{n}=\frac{a^{m}}{a^{n}} & =\frac{a \cdot a \cdot a \ldots \text { to } m \text { factors }}{a \cdot a \cdot a \ldots \text { to } n \text { factors }} \\
& =a \cdot a \cdot a \ldots \text { to } m-n \text { factors } \\
& =a^{m-n} .
\end{aligned}
$$

Rule III. To prove that $\left(\mathrm{a}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{a}^{\mathrm{mn}}$, when m and n are positive integers.

$$
\begin{aligned}
\left(a^{m}\right)^{n} & =a^{m} \cdot a^{m} \cdot a^{m} \ldots \text { to } n \text { factors } \\
& =(a \cdot a \cdot a \ldots \text { to } m \text { factors })(\alpha \cdot \alpha \cdot a \ldots \text { to } m \text { factors }) \ldots \ldots
\end{aligned}
$$

the bracket being repeated n times,

$$
\begin{aligned}
& =a \cdot a \cdot a \ldots \text { to } m n \text { factors } \\
& =a^{m n} .
\end{aligned}
$$

Examples.
(1) $\left(a^{5}\right)^{3} \times\left(a^{3}\right)^{5} \div\left(a^{7}\right)^{4}=\alpha^{15} \times a^{15} \div \alpha^{28}$ $=a^{15+15-28}=a^{2}$.

$$
\begin{align*}
\left\{\frac{\left(8 a^{3}\right)^{2}}{49 b^{2}} \times \frac{(7 b)^{3}}{(2 a)^{6}}\right\}^{2} \div\left(\frac{7 b}{a}\right)^{3} & =\left\{\begin{array}{l}
2^{6} a^{6} \times 7^{3} b^{3} \\
7^{2} b^{2} \times 2^{6} a^{6}
\end{array}\right\}^{2} \div\left(\frac{7 b}{a}\right)^{3} \tag{2}\\
& =(7 b)^{2} \div\left(\frac{7 b}{a}\right)^{3}=\frac{a^{3}}{7 b}
\end{align*}
$$

$$
\begin{align*}
\frac{81 x^{3 m-n} \times 27 x^{m+6 n}}{\left(9 x^{n+n}\right)^{4}} & =\frac{3^{4+3} \cdot x^{4 m+5 n}}{3^{8} \cdot x^{4 m+4 n}} \tag{3}\\
& =\frac{x^{4 m+5 n-4 m-4 n}}{3}=\frac{x^{n}}{3} .
\end{align*}
$$

126. It is evident from the Rule of Signs that
(1) no even power of any quantity can be negative ;
(2) any odd power of a quantity will have the same sign as the quantity itself.

Note. It is especially worthy of notice that the square of every expression, whether positive or negative, is positive.

Examples.
(1) $\left(-x^{3}\right)^{2}=\left(-x^{3}\right)\left(-x^{3}\right)=+\left(x^{3}\right)^{2}=x^{6}$.
(2) $\left(-a^{5}\right)^{3}=\left(-a^{5}\right)\left(-a^{5}\right)\left(-a^{5}\right)=-\left(a^{5}\right)^{3}=-a^{15}$.
(3) $\left(-3 a^{3}\right)^{4}=(-3)^{4}\left(a^{3}\right)^{4}=81 a^{12}$.
(4) $(b-a)^{4} \times(a-b)^{2}=(a-b)^{4} \times(a-b)^{2}=(a-b)^{6}$.

$$
\begin{equation*}
(b-a)^{5} \div(a-b)^{3}=-(a-b)^{5} \div(a-b)^{3}=-(a-b)^{2} \tag{5}
\end{equation*}
$$

EXAMPLES XVIII.

Reduce to their simplest forms:

1. $a^{3} \times a^{5} \times a^{7}$.
2. $a^{10} \times a^{2} \div a^{4}$.
3. $\frac{x^{10} \times 16 x^{6}}{8 x^{4}}$.
4. $\left(x^{3}\right)^{3} \times\left(x^{2}\right)^{2} \div\left(x^{2}\right)^{5}$.
5. $\frac{\left(a^{3} b^{2} c\right)^{2}}{\left(a b^{2} c^{3}\right)^{3}} \times \frac{b^{2} c^{7}}{a^{2}}$.
6. $\begin{array}{r}\left(3 x^{4}\right)^{2} \times\left(2 x^{2}\right)^{4} \\ 4 x^{16} \times 6^{2}\end{array}$.
7. $\left(\frac{3 a^{3} b}{c}\right)^{3} \times \frac{c^{2}}{\left(9 a^{4} h\right)^{2}} \div \frac{3 a b}{c}$.
8. $\left\{\frac{125 b^{5}}{2 \alpha^{2}} \times \frac{\left(4 a^{3}\right)^{2}}{(5 a b)^{3}}\right\}^{2} \div \frac{2^{5}}{\left(a^{2} b\right)^{2}}$.

Find the values of the following expressions, when $a=2$, $b=-\frac{1}{2}, c=-3, \quad d=\frac{1}{3}, m=5, n=3:$
9. $81 a^{5} l^{4} d^{3}$.
10. $-\frac{243 a^{3} b^{2} d}{4 c^{3}}$.
11. $27 \alpha^{m} \times b^{n} \div(3 c d)^{3}$.
12. $\left(\frac{a}{n}\right)^{n-c} \times(-3 c)^{n} \div\left(\frac{1}{b}\right)^{m}$.

Simplify the following expressions:
13. $\frac{\alpha^{3 p} \cdot a^{8 p} \cdot a^{7 p}}{a^{9 p}}$.
14. $\frac{4 x^{2 p-q} \cdot 8 x^{p+q} \cdot 16 x^{3 q}}{\left(8 x^{p+q}\right)^{3}}$
15. $\left\{\begin{array}{l}a^{m-n} \times b^{m+n} \\ a^{m+n} \cdot b^{m-n}\end{array}\right\}^{m} \div\left(a b^{2}\right)^{m n}$.
16. $\frac{3^{2} \times(27)^{4}}{9^{5} \times 51}$.
17. $\frac{2^{6 m} \times 4^{3 m} \times 8^{2 m}}{2^{18 m+1}}$.
18. $\frac{(a+b)^{2} \times(a+b)^{5}}{(a+b)^{3}}$.
19. $\frac{\left(a^{2}-b^{2}\right)^{4} \times(a+b)^{2}}{\left\{(a-b)(a+b)^{3}\right\}^{2}}$.
20. $\frac{(x-y)^{3 m}(x+y)^{2 m}}{\left\{\left(x^{2}-y^{2}\right)^{m}\right\}^{3}}$.
21. If m and n are positive whole numbers, explain the meaning of A^{m}; also explain why $A^{m} \times A^{n}=A^{m+n}$.

$$
\text { Simplify } \frac{27 a^{m+p} \cdot b^{n-q}}{81 a^{m} b^{n}}
$$

22. Simplify $\left(\frac{b c}{a}\right)^{m+n} \cdot\left(\frac{a}{c}\right)^{m} \cdot\binom{a}{b}^{n}$; and find its value when $a=7, b=3, c=2, m=2, n=1$.

MISCELLANEOUS EXAMPLES VI.

The following collection of Miscellaneous Examples covers all the rules and methods explained in the course of this text-book. The questions are selected from the Examination Paper:s set by the Science and Art Department, in Mathematics, Stage I.

1. Find the value of
when

$$
\begin{gathered}
(b-c)^{3}+2(c-a)^{3}+(a-b)^{3}-3(b-c)(c-a)(a-b), \\
a=1, \quad b=-\frac{1}{2}, \quad c=\frac{3}{2} .
\end{gathered}
$$

2. Multiply $x^{3}+a x^{2} y+a x y^{2}+y^{3}$ by $x^{2}-x^{2} y+y^{2}$; and divide $m x^{5}+m^{2} x^{4}-(2 m-3) x^{3}+(3 m+7) x^{2}+(7 m-6) x-14$ by $x^{2}+m x-2$.
3. Find the G.C.M. and L.C.M. of

$$
2 x^{4}+9 x^{2}+5 x+12 \text { and } 2 x^{4}+4 x^{3}+13 x^{2}+11 x+12
$$

4. Simplify the following expressions :

$$
\begin{aligned}
& \text { (i.) } \frac{\frac{x}{x+1}+\frac{x}{x-1}}{\frac{2}{x^{2}-1}}-\frac{4 x-\frac{1}{x}}{2+\frac{1}{x}} \\
& \text { (ii.) }\left(\frac{1}{x^{3}-y^{3}}-\frac{1}{x^{3}+y^{3}}\right) \div\left(\frac{1}{x-y}-\frac{1}{x+y}-\frac{2 y}{x^{2}+y^{2}}\right) \text {. }
\end{aligned}
$$

5. Solve the equations :

$$
\begin{aligned}
& \text { (i.) } \frac{x-3}{2}+\frac{x-4}{3}=5 \text {; } \quad \text { (ii.) } \frac{x+m}{x-n}+\frac{x+n}{x-m}=2 \text {; } \\
& \text { (iii.) } \frac{5+x}{3}=\frac{7+y}{5}=\frac{9+x+y}{7} \text {. }
\end{aligned}
$$

6. The depth of a pond at one end is twice as great as at the other. Eighteen inches of water (in depth) are drained off, and the deep end is then three times as deep as the shallow end. What were the original depths?
7. Find the value of

$$
\frac{a+b}{a b}\left(a^{2}+b^{2}-c^{2}\right)+\frac{b+c}{b c}\left(b^{2}+c^{2}-a^{2}\right)+\frac{c+a}{c a}\left(c^{2}+a^{2}-b^{2}\right)
$$

when $a=3, b=4, c=-5$.
8. Divide $(a+1)^{2} x^{3}+(\alpha+1) x^{2}+a^{2}(\alpha-1) x-\alpha^{5}$ by $(\alpha+1) x-a^{2}$: and find the value of the quotient when $\alpha=-\frac{1}{2}$, and $x=-2$.
9. Reduce to its lowest terms $\frac{x^{4}+4 x^{3}-19 x^{2}-46 x+120}{x^{4}-25 x^{2}+144}$.
10. Simplify the following expressions:
(i.) $x+y-\frac{9 x^{2}-4 y^{2}}{3 x+2 y}$;
(ii.) $\left(\frac{1}{2 a+b}+\frac{1}{2 a-b}-\frac{3 a}{4 a^{2}-b^{2}}\right) \times \frac{4 a^{2}+4 a b+b^{2}}{2 a-b}$.
11. Solve the equations:

$$
\begin{aligned}
& \text { (i.) } \frac{x-1}{3}-\frac{2 x-7}{4}=\frac{3}{4} \text {; } \\
& \text { (ii.) } \frac{2 x+5}{3}=\frac{y+4}{2}=\frac{2 x+2 y+9}{6} \text {; }
\end{aligned}
$$

and (iii.) find the relation between a and b, when

$$
\frac{3}{x-a}-\frac{2}{x+a}=\frac{x+b}{x^{2}-a^{2}}
$$

12. At what times between 4 and 5 o'clock are the hands of a watch exactly at right angles to one another?
13. Given $6 a=1,9 b=-1$, and $2 c-1=0$, find the numerical values of

$$
\begin{aligned}
& \text { (i.) } 8 a^{3}+27 b^{3}+c^{3}-18 a b c \text {; } \\
& \text { (ii.) } \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \text {. }
\end{aligned}
$$

14. Divide $x^{3}+8 y^{3}-27 z^{3}+18 x y z$ by $x+2 y-3 z$, and test your answer by substituting $x=5, y=-4, z=3$, in the dividend, divisor, and quotient.
15. Find the value of $x^{3}-8 y^{3}+29 z^{3}+18 x y z$, when $2 y=x+3 z$ and $z=5$.
16. Reduce to its lowest terms

$$
\frac{x^{4}-2 x^{3}-25 x^{2}+26 x+120}{x^{4}-4 x^{3}-19 x^{2}+46 x+120} .
$$

17. Simplify the fractions :
(i.) $\frac{1}{x-\frac{x}{x+1}}+\frac{1}{x+\frac{x}{x-1}}+\frac{1-\frac{3}{x}}{1-\frac{x}{3}}$.
(ii.) $\frac{a+b}{a-b}-\frac{2 a b}{a^{2}-b^{2}}-\frac{2 a^{2} b^{2}}{a^{4}-b^{4}}$.
18. Solve the equations:
(i.) $5 x-[3 x+6-(2 x-11)]=6 x+11-\{2 x-3-(15-2 x)\}$
(ii.) $(a x+b)(b x-a)=a\left(b x^{2}-a\right)$
(iii.) $\frac{7 x+3}{5}=\frac{5 y-7}{4}=\frac{2 x+3 y-5}{3}$.
19. If one part of $£ 400$ is put out at 4 per cent. per annum, and the other part at 5 per cent. per annum ; and if the yearly income obtained is $£ 18$. $15 s$., what are the parts?
20. Given $2 x=3,4 y=3$, and $z=-2$; find the numerical values of the following expressions :

$$
\begin{aligned}
& \text { (i.) } \sqrt{ }(8 y+2 z+7)+\sqrt{ }(6 x-8 y+z) \\
& \text { (ii.) } \frac{x}{y}+\frac{4 x+2 z}{2 x-z} ; \quad \text { (iii.) } x y^{\prime}+y z-z x .
\end{aligned}
$$

21. Simplify the expression

$$
\frac{2\left(x^{2}+2 x a+a^{2}\right)\left(x^{2}-2 x a+a^{2}\right)-2\left(x^{2}-a^{2}\right)^{2}+5 a x(a+x)^{2}-20 a^{2} x^{2}}{(x-a)(x+a)} .
$$

22. Reduce $\frac{8 x^{3}-10 x^{2}-16 x-3}{6 x^{4}-22 x^{3}+31 x^{2}-23 x-7}$ to its lowest terms; and find its value when $x=-\frac{2}{3}$.
23. If $\frac{x}{a}=\frac{y}{b}$, shew that either fraction is equal to $\frac{x+y}{a+b}$ or $\frac{x-y}{a-b}$.
24. Show that the product of

$$
1-\frac{a}{x+2 a}, 1+\frac{b}{x-2 b}, \text { and } x+2(a-b)-\frac{4 a b}{x} \text { is } \frac{(x+a)(x-b)}{x} ;
$$

write down the value of each factor and of the product, when $x=3 \alpha=3 b$.
25. Solve the equations:

$$
\begin{aligned}
& \text { (i.) } a x+b=3 a x+c ; \quad \text { (ii.) } \frac{2}{x-a}-\frac{1}{x-b}=\frac{x}{x^{2}-a^{2}} ; \\
& \text { (iii.) }\left\{\begin{array}{l}
\frac{x}{2}-y=\frac{7}{2}, \\
\frac{x}{25}+\frac{y}{2}=-\frac{3}{10} .
\end{array}\right.
\end{aligned}
$$

26. Of two squares of carpet one measures 44 feet more round than the other, and 187 square feet more in area. What are their sizes?
27. When $a=7$, and $x=-16$, find the numerical value of

$$
\frac{a+x}{a-x}+\sqrt{\frac{a+x}{a+2 x}}
$$

28. Find the value of

$$
\frac{x^{4}-4 x^{3} y+6 x^{2} y^{2}-5 x y^{3}+2 y^{4}}{2 x^{4}-5 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4}},
$$

when $x=5$ and $y=3$.
29. Shew that

$$
\frac{x^{2}}{a^{2}}+\left(\frac{z-x}{b}\right)^{2} \text { and } \frac{z^{2}}{a^{2}+b^{2}}+\frac{a^{2}+b^{2}}{a^{2} b^{2}}\left(x-\frac{z a^{2}}{a^{2}+b^{2}}\right)^{2}
$$

are identical expressions; that is to say, that one may be deduced from the other. Find their values when $x=3, z=4$, and $a=b=5$.
30. Simplify the following expressions :

$$
\begin{aligned}
& \text { (i.) }\left[\frac{1+x}{1-x}-\frac{1-y}{1+y}\right] \div\left[1+\frac{(1+x)(1-y)}{(1-x)(1+y)}\right] \text {; } \\
& \text { (ii.) }\left[1-\frac{1}{1+x}-\frac{x}{1-x^{2}}+\frac{x^{2}}{1+x^{3}}\right] \times \frac{x-1}{x}
\end{aligned}
$$

31. Solve the equations:

$$
\begin{array}{ll}
\text { (i.) } x+\frac{9 b^{2}}{a}=\frac{3 b x}{a}+a ; & \text { (ii.) } \frac{x+a}{a}+\frac{x}{x-a}=\frac{x-a}{a} \text {; }
\end{array}
$$

32. A herd of 125 cattle is sold for $£ 2575$. There were half as many oxen again as there were cows; and the oxen fetched altogether $£ 25$ less than the cows. What was the price of each ox, and of each cow?
33. Find the numerical value of $\sqrt{\frac{a+b}{3 a-b}-\frac{a+10 b}{a-b}}$, when $a=5$ and $l=-1$.
34. The rent of a shop is two-sevenths of the rent of the whole house of which it is a part. Being separately rated, its occupier pays $£ 10.15$ s. a year less in rates than the occupier of the rest of the house. The rates are $3 s .7 d$. in the pound. What is the rent of the whole house?

ANSWERS TO ALGEBRA.

I. a. Page 3.
4. 343.
5. 30 .

1. 70.
1. 125.
1. 105.
1. 189.
1. 200.
1. 32.
1. 144.
1. 48.
1. 2.
1. 567.
1.
2. 27.
1. 1000.
1. 3.
1. 243.
1. 24.
1. 81. 23.8 .
1. 81.
1. 2.

I. b. Page 4.
4. 135 .
5. 15.

1. 700.
1. 686.
1. 96 .
2. 0 .
3. 3000 .
4. 60.
1. 162 ,
2. 0 .
3. 36. 16. $1 \frac{1}{8}$.
1. 3. 12. 1 .
1. $5 \frac{1}{33}$.
2. 2.

I. c. Page 5.
4. 6 .
5. 9 .

1. 8.
1. 29.
1. 4.
1. 31 .
2. 49.
1. 0 .
2. 31 .
3. 12 .
4. $3 \frac{1}{3}$. 15.10 .
5. 6.
1. $1 \frac{1}{3}$.
2. $2 \frac{1}{6}$.
II. a. Page 8.
3. $5 \frac{1}{3}$. 17
4. 6 . 18 . $4 \frac{1}{3}$.
5. $5 \frac{1}{6}$.
6. 40 d . 5. $-26 x$.
7. $16 a$.
8. $24 x$.
9. $32 p$.
10. $3 x y$.
11. $p q$.
12. $-40 b$.
13. $-47 y$.
14. -93 m .
15. $-b^{3}$. 15. $11 a^{2} b^{2}$.
16. $-5 a b c$.
17. $3 x y z$.
18. a^{2}.
19. $\quad-11 p q x . \quad$ 19. $\frac{11}{6} x . \quad$ 20. $\quad \stackrel{8}{5} a . \quad 21 . \quad-3 b . \quad 22 . \quad-x^{2}$.
20. $-9 a^{2} x$. 17. $-43 a b c d$.
II. b. Page 10. 1. $3 a-6 c$,
21. $6 x$.
22. $l+m+n$.
23. $5 a-2 d$.
24. $16 x-7 y$.
25. $4 a$.
26. $8+2 x-2 z$.
27. $11 a b-5 k l+5 x y$.
28. $4 a x$.
29. $-2 a b+8 c d$.
II. c. Page 12.
30. $x y$.
31. $x^{2}+x+1$.
32. $x^{2}+4 x$.
33. $a^{2} b+b^{3}$.
34. $7 m^{3}+3 m^{2}-1$.
35. $3 a x^{3}-c x+2 d$.
36. $2 p y^{2}+q y-3$.
37. $-2 a+8 a^{3}$.
38. $4+y+2 y^{2}$.
39. $8 a^{3} x^{2}+x$.
40. $x^{3}+1$.
41. $z^{2}+3 x z$.
42. $-\frac{1}{4} x^{3}+\frac{3}{8} a x^{2}+\frac{5}{8} a^{2} x$.
43. $-\frac{1}{4} x^{2}-x y+\frac{3}{5} y^{2}$.
44. $-a^{3}-\frac{1}{2} a^{2} b+\frac{1}{4} a b^{2}+b^{3}$.

III. Page 14.

1. $a+b+2 c$.
2. $a-4 b-2 c$.
3. $9 x-15 y-14 z$.
4. $-m+4 n-4 p$.
5. $p-5 q+2 r$.
6. $-x+8 y+3 z$.
7. $3 x+8 y-2 z$.
8. $4 n+p$.
9. $-c d-a c-b d$.
10. $2 p q+4 q r-8 r s$.
11. $m n-22 n p+3 p m$.
12. $2 x^{3}-6 x^{2}+2 x$.
13. $-3 x^{3}+x$.
14. $a^{3}-a b c$.
15. $-12+9 b c+6 b^{2} c^{2}$.
16. $p^{3}-q^{3}-6 p q r$.
17. $-x^{3}$
18. $x^{3}+3 x^{2}+5 x+7$.
19. $-7 a^{3}-5 a^{2}+12$.
20. $5 x+7 x^{2}-7 x^{3}$.
21. $2-2 x+x^{2}-x^{3}-2 x^{4}+x^{5}$.
22. $-m^{3}+22 m^{2} n-16 m n^{2}+2 n^{3}$.
23. $\frac{5}{8} x^{2}+\frac{1}{6} a x-\frac{1}{3}$.
24. $\frac{3}{4} x^{3}-\frac{1}{2} x^{2} y-\frac{1}{6} y^{2}$.
25. $-\frac{1}{8} a^{3}-\frac{2}{3} a^{2} x-\frac{1}{2} a x^{2}$.
IV. a. Page 17.
26. $35 x$.
27. $6 b$.
28. x^{5}.
29. $30 x^{3}$.
30. $42 c^{7}$.
31. $45 y^{7}$.
32. $15 m^{8}$.
33. $24 a^{10}$.
34. $30 a^{2} x^{2}$.
35. $12 q^{2} r^{2}$.
36. $a^{7} x^{4}$.
37. $12 x^{3} y^{7}$.
38. $5 a^{6} b^{5}$.
39. $54 x^{8} y^{4}$.
40. $105 a^{2} b^{3} c^{4}$.
41. $\quad 60 a^{4} b^{3} c^{3} d^{2}$.
42. $a^{3} b c-a^{3} c^{2}$.
43. $x^{5} y^{2} z^{2}-x^{6} y z^{3}+4 x^{3} y^{2} z^{7}$.
44. $15 a^{3} b^{2} c^{4}-9 a b^{4} c^{4}$.
45. $3 a^{5} b^{2}-15 a^{4} b^{2}+18 a^{4} b$.
46. $3 x y^{3} z-9 x^{2} y z^{2}-6 y z$.
47. $2 a^{5} b x-6 a^{4} b x^{2}$.
IV. b. Page 18.
48. $-2 a$.
49. $-12 x$.
50. x^{5}.
51. $-15 m^{4}$.
52. $-12 q^{3}$.
53. $16 y^{6}$.
54. $-9 m^{6}$.
55. $-16 x^{8}$.
56. $36 a^{2} b^{2} c^{2}$.
57. $-36 a^{5} b$.
58. $-24 p q s t$.
59. $-3 a^{2}+\frac{9}{2} a b-6 a c$.
60. $-\frac{5}{2} x^{2}+\frac{5}{3} x y+\frac{10}{3} x$.
61. $\frac{1}{4} a^{2} x-\frac{1}{16} a b x-\frac{3}{8} a c x$.
62. $-2 a^{5} x^{3}+\frac{7}{2} a^{4} x^{4}$.
63. $\frac{5}{2} a^{4} x^{2}-\frac{5}{3} a^{3} x^{3}+a^{2} x^{4}$.
64. $\frac{21}{2} x^{3} y-x^{2} y^{2}$.
IV. c. Page 19.
65. $a^{2}-13 a+42$.
66. $c^{2}-64$.
67. $-x^{2}+8 x-16$.
68. $y^{2}+14 y+49$.
69. $6 x^{2}+x-12$.
70. $25 c^{2}-16 d^{2}$.
71. $4 y^{2}-9 z^{2}$.
72. $a^{2}+12 a+35$.
73. $x^{2}+x-12$.
74. $y^{2}-16$.
75. $x^{2}+x-72$.
76. $p^{2}-100$.
77. $d^{2}+14 d+49$.
78. $y^{2}-9$.
79. $a^{2}-9 a+20$.
80. $6 a^{2}-11 a-10$.
81. $2 x^{2}-9 x-35$.
82. $2 x^{2}-3 a x-9 a^{2}$.
83. $6 a^{2}+5 a b-6 b^{2}$.
84. $12 x^{2}-17 x y-5 y^{2}$.
85. $x^{2} y^{2}-4 b^{2}$.
IV. d. Page 21.
86. $2 x^{3}-7 x^{2}-x+2$.
87. $8 \alpha^{3}+10 \alpha^{2}-7 \alpha-6$.
88. $6 y^{3}-11 y^{2}+6 y-1$.
89. $12 x^{3}+x^{2}-25$. 5. $6 x^{3}-25 x^{2}+28 x-49$.
90. $-10 c^{3}+13 c^{2}-10 c+3$.
91. $2 a^{4}-5 a^{3}+a^{2}-12$.
92. $6 k^{4}-11 k^{3}-2 k^{2}+4 k+1$.
93. $x^{4}+x^{2} y^{2}+y^{4}$. 10. $a^{4}+4 x^{4}$.
94. $x^{5}-6 x^{4}+9 x^{3}-x$.
95. $\alpha^{6}-36 a^{2}+60 \alpha-25$.
96. $4 y^{8}-16 y^{6}+16 y^{4}-1$.
97. $4 x^{5}-x^{3}+4 x$.
98. $-a^{6}+2 a^{5} b^{2}-a^{4} b^{4}+b^{6}$.
99. $a^{6}-3 a^{4} x^{2}+3 a^{2} x^{4}-x^{6}$.
100. $a^{7}-7 a^{6}+21 a^{5}-35 a^{4}+35 a^{3}-21 a^{2}+7 a-1$.
101. $-x^{8}+4 x^{6} y^{2}-6 x^{4} y^{4}+4 x^{2} y^{6}-y^{8}$.
102. $\frac{2}{9} x^{3}-\frac{3}{4} y^{3}$.
103. $\frac{9}{8} x^{4}-\frac{3}{2} a x^{3}+\frac{1}{2} a^{2} x^{2}-\frac{2}{9} a^{4}$.
104. $\frac{1}{4} x^{4}-\frac{43}{36} x^{2}+\frac{9}{16}$.
105. $\frac{1}{4} a^{4}+x^{4}$.
V. a. Page 23.
106. $3 b^{4}$.
107. $-2 p q^{2}$.
108. $2 x$.
109. $2 a^{4}$.
110. $5 a^{3}$.
111. a^{3}.
112. $-5 a^{2} c^{5}$.
113. $l^{2} m$.
114. $8 x^{6}$.
115. $-5 z^{6}$.
116. $-x+y+z$. 15 .
117. $-10 a^{2}+5 a b-1$.
118. $-x^{2}-9 a x+4$.
119. $-a^{2}+3 a b+2 b^{2}$.
120. $2 a-3 b+4 c$.
121. $-\frac{1}{3} x^{2}+2 y^{2}$.
122. $3 x-2 y-4$.
123. $-\frac{6}{7} a^{2} x^{2}+\frac{3}{2} a x^{3}$.
V. b. Page 24.
124. $a+1$.
125. $b+1$.
126. $x+6$.
127. $x+4$.
128. $m+13$.
129. $x-5 a$.
130. $a-3 b$.
131. $-x+3$.
132. $x-8$.
133. $4 a+3 x$.
134. $5 x-6 y$.
135. $3 \alpha+7$.
136. $2 m-7 n$.
137. $5 x+7 y$.
138. $2 x^{2}-3 x+2$.
139. $3 x^{2} y-5 x y^{2}+4 y^{3}$.
V. c. Page 26.
140. $a-2$.
141. $y+4$.
142. $3 a+2$.
143. $2 x+3 a$.
144. $2 x-5 y$.
145. $x^{2}-3 x+2 . \quad$ 7. $x-4$; rem. $x-1$.
146. $3 m-5$.
147. $3 y-1$.
148. $7 x^{2}+5 x-3$; rem. 20. 11. $x-2 \alpha$.
149. $y^{2}+3 y+9$.
150. $x^{2}-2 x y+2 y^{2}$.
151. $3 a^{2}+4 a+2$.
152. $\quad a^{4}+4 a^{2}+8$. 16. $4 m^{2}+14 m+9$. 17. $3 x^{2}-4 x+5$; rem. $2 x+7$.
153. $-a+b^{3}-3$.
154. $x^{5}-x^{4}+x-1$; rem. 2.
155. $2 a^{3}-4 a^{2}+4 a-2$; rem. 4 .
156. $a^{2}+2 a b+b^{2}+a+b+1$.
157. $1+a+a^{2}+2 x-2 a x+4 x^{2}$.
158. $\frac{1}{4} a^{2}-3 a x+9 x^{2}$.
159. $6 x-\frac{1}{3} y-\frac{1}{2}$.
160. $\frac{4}{9} a^{4}+\frac{1}{2} \alpha^{3} x+\frac{9}{16} \alpha^{2} x^{2}+\frac{81}{128} a x^{3}$.
VI. a. Page 28. 1. $2 x+y . \quad$ 2. $-x+y+z . \quad$ 3. 36 .
161. $-5 n+p$.
162. $-8 x-17 y$.
163. m^{2}.
164. $5 a-b$.
165. $-7 q^{2}$.
166. $-x$ 10. 2α.
167. $4 x$.
168. $-a$.
VI. b. Page 30. 1. $22-8 x$.
169. $2 x$.
170. $3 x-9$.
171. $127 x-315$.
172. $7 x-3 y-3$.
173. $2 y+4 z$.
174. $x-4 y$.
175. $a-2 b+3 c-3 d+3 e$. 9. $p+21 q$.
176. $3 x-4 y$. 11. $6 x+2 y$,
177. $5 x+7$.
178. $-50 x$.
179. $42 x^{2}+216 x y+30 y^{2}$,
180. (1) $(a-1) x^{4}+(2-b) x^{3}+(2-c) x^{2}$.
(2) $-(1-a) x^{4}-(b-2) x^{3}-(c-2) x^{2}$.
181. (1) $\left(a^{2}-c\right) x^{3}+(a-b-5) x^{2}$. (2) $-\left(c-a^{2}\right) x^{3}-(5-a+b) x^{2}$.
VI. c. Page 32.
182. 36 .
183. -48 .
184. 5.
1. 24 . 5 . -16 .
2. -12 .
3. -16 .
4. 375.
1. 500 .
2. 140 .
3. -2000 .
4. -224.
5. 40.
1. 3.
1. 2.
1. 0 .
2. 29.
1. -13 .
2. $60 \frac{23}{2} . \quad 20 . \quad-\frac{18}{65}$.
3. $1 \frac{71}{2} \frac{1}{2}$. $22 . \quad-13 \frac{3}{4}$.
4. $-\frac{3}{4}$.
5. $1 \frac{2}{3}$. $\quad 25 . \quad-3$.
6. 6. 27. $\frac{5}{3}$. $28 . \quad$ (1) -12 ; (2) 1.
VII. a. Page 35.
1. 2 .
2. 7.
1. 3.
1. 2.
1. $4 \frac{1}{2}$.
2. 2.
1. 5.
1. $1 \frac{1}{2}$.
2. 13.
1. 32.
1. 7.
1. 10 .
2. $1 \frac{2}{3}$.
3. 5.
1. 3.
1. 18.
1. $-6 . \quad 18 . \quad 7$.
2. $-8 . \quad 20 . \quad 5$.
3. $-\frac{3}{2}$.
4. $\frac{2}{3}$.
VII. b. Page 37. 1. 3. 2. 1. 3. 2. 4. $5 \frac{1}{2} . \quad$ 5. 11.
5. $\frac{1}{3}$.
6. $\frac{2}{5}$.
7. 10 .
8. $\quad-6 . \quad 10: 1$.
9. 7.
1. $-10.13 .2 . \quad 14.11 . \quad 15.8 . \quad 16 . \quad-4 . \quad 17 . \quad 3 \frac{1}{7}$.
2. $2 \frac{1}{2}$.
3. -16 .
4. 9.
1. 60.
1. 12 .
2. $-\frac{11}{13}$.

VIII. a. Page 39.

1. $x-5$.
2. $15-y$.
3. $b-6$.
4. $\frac{3}{x}$.
5. $4 x$.
6. $x-10$.
7. $75-x$.
8. x.
9. $\frac{2 y}{x}$.
10. $a-8$.
11. $4 x$.
12. $2 a x$.
13. p^{x}.
14. $n y$ shillings. $15 . \frac{y}{2} \quad$ 16. $\frac{3 n}{10}$ 17. $-100-n . \quad$ 18. $\frac{20}{p}$.
15. $\frac{20 y}{x} . \quad$ 20. $\frac{x}{10} . \quad$ 21. $p q$ miles. 22. $\frac{m}{n}$ miles. 23. $\frac{y}{x}$.
VIII. b. Page 40. 1. $a, a+1, a+2 . \quad$ 2. $b-3, b-2, b-1, b$.
16. $2 u+1$.
17. $2 n-2$.
18. $x-15$ years.
19. $n-x$ years.
20. $y-2 x$ years.
21. $40+x$ years.
22. $2 x-10$ years.
23. $20 m+3=n-3$.
24. $13+x=4(25-x)$.
25. $\frac{30}{x}$.
26. $\frac{p q}{15}$ hours.
27. $\frac{120 x}{7}$ miles.
28. $\frac{5 x^{2}}{y}$.
29. $\frac{n}{3}$.
30. $20 x-25+\frac{y}{12} . \quad$ 18. $\quad 52 x-\frac{3}{5} y . \quad$ 19. 6 shillings. 20. a^{2} rlays.
31. $\frac{p m}{192 k}$.
32. $\frac{100 b}{a}$.
33. $\frac{100 b}{a+b}$.
34. $£\left(a+\frac{a b}{100}\right)$.
IX. a. Page 43.
35. 9 .
36. 3.3 .4 .
37. $12,15$.
38. $11,19$.
39. $\quad 5,15 . \quad 7 . \quad 6,13$.
40. $9,17 . \quad 9 . \quad A £ 35, B £ 65$.
41. $A £ 12, B £ 20, C$ £34.
42. $A £ 21, B £ 17, C$ £34.
43. A 31, $B 23, C$ 19 rupees.
44. $30,45$.
45. 112, 10.
46. 6. 16. 4 . 17. 6.
1. 56.
1. 18,30 .
2. $A £ 48, B$ £24, C £4.
3. A £219, B £73, C £219.
4. $A 48, B 32$ years.
5. $A 42, B 50, C 18$ years.
6. 7,8 .
7. $15,16$.
IX. b. Page 45.
8. $£ 2$.
9. $£ 7$.
10. $A £ 27, B £ 1$.
11. $A £ 27, B £ 9$.
12. $A 45$ years, $B 25$ years.
13. A 20 years, $B 10$ years.
14. 20 men, 30 women.
15. 27 days.
16. Father 32 years, Son 8 years.
17. 25 years.
18. Father 33 years, Son 9 years.
19. 20 half-crowns, 5 florins, 2 shillings.
20. Coffee $10 \frac{1}{4} \mathrm{lbs}$., Tea $13_{\frac{3}{4}}^{\frac{3}{4}} \mathrm{lbs}$.
21. £55. 18. 168, 72.
22. 48 years, 9 years, 3 years.
23. $A £ 25, B £ 17, C 28$.
24. 36. 22. $360 . \quad 23 . \quad 128 . \quad 24 . \quad$ Tea 3s. 4d., Sugar 3d.
1. Port 50 s ., Sherry 36s.
X. a. Page 50.
2. $x=19, y=-6$.
3. $x=1, \quad y=6$.
4. $x=-4, y=10$.
5. $x=-2, y=-3$.
6. $x=-9, y=5$.
7. $x=-5, y=6$.
8. $x=13, y=6$.
9. $x=3, \quad y=-3$.
10. $x=5, y=7$.
11. $x=13, y=1$.
12. $x=11, y=-8$.
13. $x=108, y=144$.
14. $x=7, y=S$.
15. $x=9, \quad y=15$.
16. $x=5, \quad y=6$.
17. $x=3, y=-2$.
18. $x=-5, y=-1$.
19. $x=10, y=7$.
X. b. Page 52 .
20. $x=6, \quad y=8$.
21. $x=2, \quad y=7$.
22. $x=3,, y=5$.
23. $x=-10, y=4$.
24. $x=-2, y=-3$.
25. $x=5, \quad y=-4$.
26. $x=-1, \quad y=-1$.
27. $x=-3, y=-5$.
28. $x=20, y=-4$.
29. $x=4, \quad y=5$.
30. $x=4, \quad y=-5$.
31. $x=7, \quad y=8$.
32. $x=20, y=-12$.
33. $x=-3, \quad y=-6$.
34. $x=--4, y=4$.
35. $x=2, \quad y=3$.
36. $x=\frac{1}{4}, \quad y=\frac{1}{5}$.
37. $x=5, \quad y=-\frac{1}{2}$.
X. c. Page 53 .
38. $x=6, y=1, \quad z=1$.
39. $x=5, y=-6, z=-7$.
40. $x=4, y=-5, z=8$.
41. $x=7, y=-4, z=3$.
42. $x=0, y=3, \quad z=-4$.
43. $x=1, \quad y=2, \quad z=5$.
44. $x=y=z=4$.
45. $x=-2, y=2, \quad z=2$.
46. $x=20, y=-10, z=1$.
47. $x=2, \quad y=-1, z=5$.
48. $x=-6, y=-4, z=8$.
XI. Page 56. 1. 33, 21. 2. 74, 23. 3. $33,18 . \quad$ 4. $55,29$.
49. Cow £17, Sheep £3.
50. $A 37$ years, $B 24$ years.
51. $C 3 \frac{3}{4}$ miles, $D 4 \frac{1}{2}$ miles.
52. 18 half-crowns, 23 shillings.
53. Waggon $2 \frac{1}{2}$ tons, Cart $1 \frac{1}{2}$ tons.
54. 84 .
55. 36.
1. 44 sovereigns, 208 half-crowns, 600 shillings.
2. 30 half-crowns, 20 shillings, 20 threepenny pieces.
3. Man £10, Woman £8, Boy $£ 6$, Girl $£ 2$.

Miscellaneous Examples I. Page 57, 1. $-\frac{1}{2} ; \frac{1}{4} ;-\frac{1}{4} ; 3 \frac{1}{4}$.
2. 4.
3. 1 .
$4 \quad x^{6}-14 x^{4}+49 x^{2}-36 ; 7 x^{2}-2 x y+y^{2}$.
5. $-29 \frac{2}{3} ;-3 \frac{1}{12}, 3 \frac{19}{7}$.
6. (i) $x=5, y=5$; (ii) $x=3 \frac{3}{8}, y=\frac{3}{4}$.
7. $-x^{2}+3 a x-5 a^{2}$.
8. $12 \frac{1}{4} ; 7 \frac{7}{8} ;-\frac{27}{1024}$.
10. $x^{6}-64 ; x^{3}+2 x^{2} y+3 x y^{2}-y^{3}$. 11. $\frac{11}{168} ; 60 \frac{23}{27} ;-\frac{18}{65}$.
12. -30 . 13. $4 x^{5}+7 x^{3} y^{2}-10 x^{2} y^{3}+x y^{4}-20 y^{5} ;-4 \cdot 0803$.
14. $c^{4}-(a+d) b c^{2}+(a-d) a d c+b^{2} d^{2}$. 15. -1 .
16. $9 x^{2}-\frac{y^{2}}{4} ; 9 x-\frac{3 y}{2} . \quad$ 17. $-5 x^{2}+47 x y-\frac{31}{2} x-18 y^{2}+\frac{21}{2} y-\frac{3}{2}$.
18. (i) $x=9, y=12$; (ii) $x=12, y=3$.
XII. a. Page 59.
3. $a^{2}(a-1)$.
6. $p^{2}(1+2 q)$.
9. $5 a^{2}(1-5 b)$.
12. $27(1-6 x)$.
15. $a\left(2 a^{2}-a+1\right)$.
18. $2 b^{2}\left(2 b^{3}+3 a^{2} b-1\right)$.
3. $(a+2)(a+b)$.
6. $(3+p)(q-p)$.
9. $(p+r)(q-r)$.
12. $(2 a+3 b)(a-c)$.
15. $(a-1)\left(a^{2}+1\right)$.
18. $(a+b c)(x y-z)$.
XII. c. Page 61.
3. $(y+3)(y+4)$.
6. $(b-3)(b-2)$.
9. $(z-9)(z-4)$.
12. $(z+11)(z+4)$.
15. $(a-9)(a-3)$.
18. $(x-8)(x-8)$.
21. $(y+27)(y+27)$.
24. $(a-11 b)(a-12 b)$.
27. $(x y-2)(x y-3)$.
30. $(27-\alpha)(8-\alpha)$.
XII. d. Page 62.
3. $(x-5)(x+4)$.
6. $(y-9)(y+4)$.
9. $(a+12)(a-11)$.
12. $(b+13)(b-3)$.
15. $(m-7)(m+8)$.
18. $(p-10)(p+11)$.
21. $(x-12)(x+11)$.
24. $(y+14 x)(y-7 x)$.
27. $(a b-7)(a b+2)$.
30. $(9-b)(8+b)$.

1. $(x+2)(x-1)$.
2. $(y-2)(y+6)$.
3. $(a+11)(a-3)$.
4. $(b-15)(b+3)$.
5. $(m-8)(m+7)$.
6. $(p+5)(p-13)$.
7. $(x-6)(x+8)$.
8. $\left(y^{2}-3\right)\left(y^{2}+16\right)$.
9. $\left(a^{2}-8 b^{2}\right)\left(a^{2}-9 b^{2}\right)$.
10. $(a b-7 c)(a b+5 c)$. 29. $(8-b)(12+b)$.
XII. e. Page 64.
11. $(4 a+1)(a+1)$.
12. $(2 a+1)(a+3)$.
13. $(2 a+1)(a+1)$.
14. $(a+2)(2 a+1)$.
15. $(5 a+2)(a+1)$
16. $(x-3)(x+2)$.
17. $(y+7)(y-3)$.
18. $(a-15)(a+2)$.
19. $(b+17)(b-3)$.
20. $(m+7)(m-12)$.
21. $(p-9)(p+12)$.
22. $(x-15)(x+8)$.
23. $(y-8 x)(y+12 x)$.
24. $(a+16 b)(a-15 b)$.
25. $(3 a+1)(a+1)$.
26. $(a+3)(3 a+1)$.
27. $(2 a+5)(a+2)$.
28. $(2 a+3)(a+2)$.
29. $(x+2)(3 x-1)$.
30. $(y+5)(2 y-1)$.
31. $(b+3)(2 b-5)$.
32. $(3 m+1)(2 m-3)$.
33. $(6 x-y)(x-2 y)$.
34. $(6 a-b)(a+6 b)$.
35. $(4-y)(2+5 y)$.
36. $(7+b)(4-5 b)$.
XII. f. Page 65.
37. $(a+9)(a-9)$.
38. $(9+2 x)(9-2 x)$.
39. $(2 y+5)(2 y-5)$.
40. $(6 a+1)(6 a-1)$.
41. $\left(5+c^{2}\right)\left(5-c^{2}\right)$.
42. $(2 p q+9)(2 p q-9)$.
43. $\left(x^{3}+2 a^{2}\right)\left(x^{3}-2 a^{2}\right)$.
44. $\left(a^{5}+p q^{2}\right)\left(a^{5}-p q^{2}\right)$.
45. $\left(5 x^{6}+2\right)\left(5 x^{6}-2\right)$.
46. $(x+4)(2 x+1)$. 11. $(x+3)(2 x-1)$.
47. $(y+1)(3 y-2)$
48. $(y-3)(3 y+2)$.
49. $(2 b+1)(b-3)$.
50. $(2 b+3)(3 b-1)$.
51. $(4 m-3)(m+2)$.
52. $(2 m-3)(2 m+1)$.
53. $(2 x-5 y)(2 x+y) .23$. $\quad(3 x-2 y)(2 x-y)$.
54. $(3 a-2 b)(4 a-3 b) .26 . \quad(3 a+2 b)(2 a-3 b)$.
55. $(2+y)(1-2 y)$.
56. $(3-y)(1+8 y)$.
57. $(4-3 x)(1+5 x) . \quad 32 . \quad(2-3 a)(3-2 \alpha)$.
58. $70 \times 8=560$. 26. $100 \times 2=200$. 27. $1002 \times 1000=1002000$.
59. $100 \times 64=6400.29$. $500 \times 50=25000$. 30. $1000 \times 872=872000$.
XII. g. Page 66. 1. $(a-b)\left(a^{2}+a b+b^{2}\right)$. 2. $(a+b)\left(a^{2}-a b+b^{2}\right)$.
60. $(1+x)\left(1-x+x^{2}\right)$.
61. $(2 x+1)\left(4 x^{2}-2 x+1\right)$.
62. $(a+3 b)\left(a^{2}-3 a b+9 b^{2}\right)$.
63. $(1-2 a)\left(1+2 a+4 a^{2}\right)$.
64. $(3+x)\left(9-3 x+x^{2}\right)$.
65. $(5 a+1)\left(25 a^{2}-5 a+1\right)$.
66. $(x y+7)\left(x^{2} y^{2}-7 x y+49\right)$.
67. $(8 a-1)\left(64 a^{2}+8 a+1\right)$.
68. $(2 x-7)\left(4 x^{2}+14 x+49\right)$.
69. $\left(x^{2}-3 z\right)\left(x^{4}+3 x^{2} z+9 z^{2}\right)$.
70. $(a-9 b)\left(a^{2}+9 a b+81 b^{2}\right)$.
71. $(1-y)\left(1+y+y^{2}\right)$.
72. $(x-2 z)\left(x^{2}+2 x z+4 z^{2}\right)$.
73. $(x y-1)\left(x^{2} y^{2}+x y+1\right)$.
74. $(b-2)\left(b^{2}+2 b+4\right)$.
75. $(4-p)\left(16+4 p+p^{2}\right)$.
76. $(6-b)\left(36+6 b+b^{2}\right)$.
77. $(10 x+1)\left(100 x^{2}-10 x+1\right)$.
78. $(a b c-3)\left(a^{2} b^{2} c^{2}+3 a b c+9\right)$.
79. $(x+6 y)\left(x^{2}-6 x y+36 y^{2}\right)$.
80. $\left(m-10 n^{2}\right)\left(m^{2}+10 m n^{2}+100 n^{4}\right)$.
81. $\left(5 a^{2}+8 b\right)\left(25 a^{4}-40 a^{2} b+64 b^{2}\right)$.
XII. h. Page 68. 1. $\quad(x+y+z)(x+y-z)$. 2. $\quad(x-y+z)(x-y-z)$.
82. $(a+2 b+c)(a+2 b-c)$.
83. $(2 x-1+a)(2 x-1-a)$.
84. $(2 a+b-1)(2 a-b+1)$.
85. $(a+3 c+1)(a+3 c-1)$.
86. $(a+b+c)(a-b-c)$.
87. $(3+a+x)(3-a-x)$.
88. $(2 a-3 b+c)(2 a-3 b-c)$.
89. $(11 \alpha-1)(\alpha+7)$.
90. $(x+2 b-3 c)(x-2 b+3 c)$.
91. $(5 x-y)(x+5 y)$.
92. $(x+a+z)(x+a-z)$.
93. $(5+2 x-3 y)(5-2 x+3 y)$.
94. $35 x(x+2 y)$.
95. $3 b(4 a-3 b)$.
96. $(x+y+m-n)(x+y-m+n)$.
97. $(a-x+2 b)(a-x-2 b)$.
98. $(1+a+b)(1-a-b)$.
99. $(c+a-b)(c-a+b)$.
100. $(x-1+m+2 n)(x-1-m-2 n)$.
101. $\left(x^{2}+y^{2}+z^{2}+a^{2}\right)\left(x^{2}+y^{2}-z^{2}-\alpha^{2}\right)$.
102. $4 n(m+p)$.
103. $\left(a^{2}+a+1\right)\left(a^{2}-\alpha+1\right)$.
104. $\left(a^{2} b^{2}+4\right)(a b+2)(a b-2)$.
105. $\left(16 x^{2}+9 y^{2}\right)(4 x+3 y)(4 x-3 y)$.
106. $b^{2}\left(4 a^{2}+b^{2}\right)(2 a+b)(2 a-b)$.
107. $m(2 m+n)\left(4 m^{2}-2 m n+n^{2}\right)(2 m-n)\left(4 m^{2}+2 m n+n^{2}\right)$.
108. $x^{4}\left(1+y^{2}\right)(1+y)(1-y)$.
109. $a^{2} b\left(b^{2}+9\right)(b+3)(b-3)$.
110. $x(20 a+x)(20 a-x)$.
111. $(1+3 y)\left(1-3 y+9 y^{2}\right)(1-3 y)\left(1+3 y+9 y^{2}\right)$.
112. $b^{3}(6 b+a)\left(36 b^{2}-6 a b+a^{2}\right)$.
113. $2(5 z+1)\left(25 z^{2}-5 z+1\right)$.
114. $3(7-x)\left(49+7 x+x^{2}\right)$.
115. $n^{4}\left(2 m^{4}+n^{2}\right)\left(m^{2}+2 n\right)\left(m^{2}-2 n\right)$.
116. $3 x y^{2}(2 x-3)(x+4)$.
117. $(a+1)(a-1)(b+1)(b-1)$.
118. $\left(7 x^{2}-y^{2}\right)\left(14 x^{2}+y^{2}\right)$.
119. $(a+b+1)\left\{(a+b)^{2}-(a+b)+1\right\}$.
120. $(x-2 y)\left(x^{2}+2 x y+4 y^{2}\right)(a+2 b)(a-2 b)$.
121. $(2 p-3 q)(1+2 p+3 q)$.
122. $(17-m)(7+m)$.
123. $\quad 6 b^{2}(4 a+3 b)(a-2 b)$. 46. $\quad x^{2}\left(4+x^{2} y^{2}\right)(2+x y)(2-x y)\left(15+x^{4} y^{4}\right)$.
124. $\left(x^{2}+2 x+4\right)\left(x^{2}-2 x+4\right)$. 48. $\quad\left(x^{2}+3 x y+y^{2}\right)\left(x^{2}-3 x y+y^{2}\right)$.
125. $\left(a^{2}+4 a b-b^{2}\right)\left(a^{2}-4 a b-b^{2}\right)$.
126. $\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)$.
127. $\left(a^{2}+2 a b+b^{2}+c^{2}\right)(a+b+c)(a+b-c)$.
128. $2 c\left(c^{2}+3 d^{2}\right)$.
129. $(a-b)(a+b+c)$ 54. $(a+b)(a+b-c)$.
130. $2 a(a-3 b)$.
131. $(x-y)(2 x-2 y+5)(2 x-2 y-5)$.
132. $(a+b+2 c)\left(a^{2}+b^{2}+4 c^{2}-a b-2 b c-2 c a\right)$.
133. $(a-3 b+c)\left(a^{2}+9 b^{2}+c^{2}+3 a b+3 b c-c a\right)$.
134. $(a+2 c+1)\left(\alpha^{2}+4 c^{2}+1-2 a c-a-2 c\right)$.
135. $(2 a+3 b+c)\left(4 a^{2}+9 b^{2}+c^{2}-6 a b-3 b c-2 c a\right)$.
XII. k. Page 69. 1. $a^{2}-2 a b+b^{2}-c^{2}$. 2. $4 x^{2}-y^{2}+4 x z+z^{2}$.
136. $1-6 x^{2}+x^{4}$. 4. $c^{4}-9 c^{2}-12 c-4$.
137. $a^{2}+2 a b+b^{2}-c^{2}+2 c d-d^{2}$.
138. $p^{2}-2 p q+q^{2}-x^{2}+2 x y-y^{2}$.
139. $a^{8}-2 a^{4} b^{4}+b^{8}$.
140. $1-3 x^{4}+3 x^{8}-x^{12}$
141. $a^{6}-14 a^{4}+49 a^{2}-36$.
142. 729- y^{6}.
143. $1+c^{4}+c^{8}$.
144. $a^{2}(a+2)(a-8)$.
145. $3 x^{2}(x+3)$. E.C.
146. $(2 a-3)(3 a+1)$.
147. $(x-2)\left(x^{2}-x+1\right)$.
XIII. a. Page 71.
148. $5 x^{2}$.
149. $(a-b)^{2}$.
150. $17 x y z$.
151. $a(3 a-2 b)$.
152. $a^{2} x^{2}(a-x)^{2}$.
153. $(x-2)^{2}$.
154. $(a-x)^{2}$.
155. $x-4$.
156. $x y$.
157. $6 a b c^{2}$.
158. $a b^{2} c^{2}$.
159. $3 a+2 b$.
160. y.
161. $x(x-7)$.
162. m.
163. $x-y$.
164. $x^{2}(x+y)$.
165. $y^{3}(x-y)$.
166. $x^{3}(x-5)$.
167. $a^{2} x^{2}(3 a-2)$.
XIII. b. Page 75.
168. $2 x^{2}-x+3$.
169. $y^{2}-y+1$.
170. $2 x^{2}-5$.
171. $a^{2}-3 a+2$.
172. $2 x^{2}-x-2$.
173. $q^{2}-2 q+1$.
174. $a^{2}+a-3$. 8. $y\left(y^{2}+2 y+1\right)$. 9. $\quad 5 x\left(3 x^{2}+2\right)$. 10. $2 m+7$.
175. $3(x-2)$.
176. $a(a+1)$.
177. $x+3$.
178. $3 \alpha^{2}-2 x x+x^{2}$.
179. $2-a$.
180. $x(3+4 x)$.
181. $1+a$.
182. $x(3+4 x)$.
183. $x^{2}-2 x+1$.
184. $2 x^{2}-7$.
XIV. a. Page 77.
185. $6 x^{2} y^{2} z^{2}$.
186. $162 a^{3} b^{5}$.
187. $210 a^{2} c^{5} x^{6} y z$.
188. $60 a^{2} b^{3} x^{2} y$.
189. $3630 a^{2} b^{5} c x^{4} y^{3} z^{3}$.
190. $a^{2}(a-1)$.
191. $4 m^{2}(3 m-4)$.
192. $b\left(b^{2}-1\right)$.
193. $(x+2)(x-2)\left(x^{2}-2 x+4\right)$.
194. $2 a b(3 a+1)(3 a-1)$.
195. $(m-2)(m-3)(m+7)$.
196. $y^{3}(1+3 y)(1-3 y)$.
197. $(x+3 y)\left(x^{2}-3 x y+9 y^{2}\right)(x-2 y)$.
198. $(c+3 x)(c-6 x)(c-2 x)$.
199. $\alpha(a+1)(a-3)(a-5)$.
200. $6(x+2 y)(x-2 y)(x-4 y)$
201. $12 x(x+2 \alpha)^{2}(x-2 \alpha)$.
202. $a^{3} c^{2}(a+c)^{2}(a-c)$.
203. $4 a^{2} x^{2}(a-2 x)^{2}$.
204. $(2 x-3)^{2}(x+1)(2 x+3)$.
205. $a^{3}(2-a)^{3}$.
206. $60 x^{3} y^{4}(x-y)^{3}(x+y)\left(x^{2}+x y+y^{2}\right)$.
207. $x(x-4)^{2}(2 x+1)(3 x+5)$.
208. $\alpha x(3 \alpha+x)(2 a-3 x)(5 \alpha+2 x)(2 \alpha-5 x)$.

XIV. b. Page 77.

2. $(y+3)\left(y^{2}-3\right)\left(y^{2}-8\right)$.
3. $(x+1)(x+2)(x-4)(x-5)$.
4. $(m-1)(m+1)(m+2)(m+3)$.
5. $\left(2 x^{2}-3\right)\left(x^{2}-x+2\right)\left(2 x^{2}-x+3\right)$.
6. H.C.F. $x^{3}(1-x)$, L.C.M. $x^{4}(1-x)^{3}$.
7. $a^{4} x^{2}(a+x)^{3}(a-x)^{2}$.
8. H.C.F. $2 x+3$, L.C.M. $(2 x+3)(3 x-2)(3 x-4)$.
9. H.C.F. $a+2 b$, L.C.M. $(a+2 b)(a-2 b)(a+3 b)(a-b)^{2}$.
10. $(1+x)(1-x)\left(1+x-x^{4}\right)$.
11. $a^{2}(a+2 b)^{2}$.
12. H.C.F. $a(3 a-2 x)$ L.C.M. $2 a^{2} x(3 a-2 x)^{2}(3 a+2 x)(2 a-3 x)$.
13. $x y(x-y)\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right)$.

Miscellaneous Examples II. Page 78.

1. $(x+18)(x-1)$.
2. $(x-2)(x+1)$.
3. $(x+2)(x-1)$.
4. $(2 x-3)(x+4)$.
5. $(x-2)\left(x^{2}+2 x+4\right)$.
6. $(x+y)^{2}(x-y)$.
7. $(x+y+z)(x+y-z)$.
8. $(x+a)(x-a)(2 x+3 a)$.
9. $(x-3 y+z)(x-3 y-z)$.
10. $(x-9)(y+4)$.
11. $(1+x)(1+y)(1-x)(1-y)$.
12. $(a-d+b-c)(a-d-b+c)$.
13. $(x+2)(x+3)(x-3)$.
14. $(x-y)(x+y-6)$.
15. $\left(x^{2}+2 x y+4 y^{2}\right)\left(x^{2}-2 x y+4 y^{2}\right)$.
16. L.C.M. $30\left(x^{3}-1\right)\left(x^{2}-9\right)$.
17. L.C.M. $36\left(x^{2}-1\right)\left(x^{2}-4\right)\left(x^{2}-9\right)$.
18. L.C.M. $\left(x^{2}-4\right)(x-6)(3 x-2)$.
19. L.C.M. $12\left(x^{2}-4\right)(2 x-1) . \quad$ 20. $3 y(3 x+2 y) . \quad 21 . \quad 3 x^{2}-2 x-7$.
20. $x^{2}-5 x+1$; $\left(x^{2}-5 x+1\right)\left(x^{2}-7\right),\left(x^{2}-5 x+1\right)(3 x-8)$.
21. $x^{2}-4 x+3$; $\left(x^{2}-4 x+3\right)(x+7),\left(x^{2}-4 x+3\right)(2 x-1)$.
22. $2 x^{2}-x+1$; $\left(2 x^{2}-x+1\right)(x-1)(2 x+1),\left(2 x^{2}-x+1\right)(x+3)$.
23. $x^{2}+3$; $\left(x^{2}+3\right)(4 x-9),\left(x^{2}+3\right)(2 x+1)(x-2)$.
24. $a^{3}+2 a^{2} x+2 a x^{2}+x^{3}$ 。
25. $x^{4}+\frac{625}{4} . \quad$ 28. $\quad 4 x^{2}(7 x-13)$,
26. $12 x\left(x^{3}+15\right)$; $18 \frac{3}{4}$.
27. $(a+b)(2 a+b)(3 a+b)$.
XV. a. Page 81.
28. $\frac{2 y^{3}}{3 x z^{3}} . \quad$ 2. $\frac{3 p^{2} m^{2}}{5 k}$.
29. $\frac{3 a}{5 b x^{2}}$.
30. $\frac{z}{5 x}$.
31. $\frac{x}{2 x-y}$.
32. $\frac{1}{2 a b}$.
33. $\frac{y z^{2}}{y+2 z}$.
34. $\frac{2(x y-2)}{3 x}$.
35. $\frac{x}{x-3}$.
36. $\frac{7 a^{2}}{5 c(x-c)}$.
37. $\frac{x-5}{5 x}$.
38. $\frac{2 a+b}{a(2 a-b)}$.
39. $\frac{a^{2}-a b+b^{2}}{a-2 b}$.
40. $\frac{2 c-d}{c+3 d}$.
41. $\frac{x-7}{3 x+1}$.
42. $\frac{x-1}{x+4}$.
43. $\frac{3\left(a^{2}+2 a+4\right)}{4(a+3)}$.
44. $\frac{2 a}{3 a-x}$.

In each of the following examples the H.C.F. is given in [].
XV. b. Page 82.

1. $\frac{x-1}{3 x^{2}+1}\left[x^{2}+2\right]$.
2. $\frac{a+1}{a-3}\left[a^{2}-a+2\right]$.
3. $\frac{y-3}{3 y+1}\left[y^{2}+y+1\right]$.
4. $\frac{m(m+1)}{m^{2}+m+1}[m-2]$.
5. $\frac{a^{2}-3 a b+7 b^{2}}{a(a-7 b)}[a+3 b]$.
6. $\frac{3 x-2 a}{x-4 a}\left[3 x^{2}+2 a x+a^{2}\right]$.
7. $\frac{5 x^{2}+x+1}{2 x^{2}-x-1}[x-1]$.
8. $\frac{c^{2}+5 c d+3 d^{2}}{2\left(c^{2}+6 c d+4 d^{2}\right)}[c-3 d]$.
9. $\frac{x^{2}+3 x+8}{8 x^{2}+3 x+1}\left[x^{2}-3 x+1\right]$.
10. $\frac{y\left(y^{2}+7 y+9\right)}{y^{2}+8 y+11}[y(y-1)]$.
11. $\frac{1+2 x}{2+3 x}\left[1-2 x+3 x^{2}\right]$.
12. $\frac{1-3 x}{2+x+5 x^{2}}\left[2+x-x^{2}\right]$.
XV. c. Page 83.
13. $\frac{c}{a} \quad$ 2. $\frac{3 a c d^{2}}{2 b^{3}}$.
14. $\frac{p q x y}{6 b}$. 4. $3 a^{2}$.
15. $2(x-1)$.
16. $\overline{4(a b-2)} \cdot$

4(ab-2)
7. $\frac{c d}{c+d}$.
8. $\frac{5}{6}$.
9. $\frac{b(3 b+4 a)}{b+5}$.
10. 1.
11. $\frac{y-6}{y+3}$.
12. $\frac{a^{2}-3 a+9}{a+2}$.
13. $\frac{2 a+1}{a+2}$.
14. $\frac{5 b+1}{b}$.
15. 2.
16. $8 a b+1$.
17. $\frac{1}{x}$.
18. $\frac{a}{a+b}$.
19. $\frac{x+3 a}{x-6 a}$.
20. 1.
XV. d. Page 86.

1. $\frac{5 a}{24}$.
2. $\frac{5 x}{4}$.
3. $\frac{a z+2 a x-3 a y}{x y z}$.
4. $\frac{y}{30}$.
5. $\frac{2 a b+a^{2}-b^{2}}{a b}$.
6. $\frac{a p^{2} q^{2}+b q-c p^{2}}{p^{2} q^{2}}$.
7. $\frac{3 a-1}{3}$.
8. $\frac{b-10}{5}$.
9. $\frac{4}{35}$ 10. $\frac{2 x+1}{3 x}$.
10. $\frac{2}{3}$ 12. 1.
11. $\frac{x^{2}+3 y^{2}}{3 x y} . \quad$ 14. $\frac{a b-6 a c}{6 b c} . \quad$ 15. $\frac{a y-3 x y+4 x}{2 x y} . \quad$ 16. $\frac{2 a-3 b}{a b}$.
XV. e. Page 88.
12. $\frac{2 a-5}{(a-2)(a-3)}$.
13. $\frac{2}{(x-4)(x-2)}$.
14. $\frac{(a-b) x}{(x-a)(x-b)}$.
15. $\frac{2\left(a^{2}+x^{2}\right)}{a^{2}-x^{2}}$.
16. $\frac{x}{x^{2}-1}$.
17. $\frac{2(a+1)}{a^{2}-4}$.
18. $\frac{2\left(x^{2}-2 x y+2 y^{2}\right)}{x^{2}-4 y^{2}}$.
19. $\frac{a(5 x+13 a)}{6 x\left(x^{2}-a^{2}\right)}$.
20. $\frac{x+5}{(x-2)(x+1)}$.
21. $\frac{3 y+4}{(y-3)(y+1)}$.
22. $\frac{1}{(1-a)^{2}}$.
23. $\frac{x+3 y}{(x+y)^{2}}$.
24. $\frac{6 x y}{(x+y)^{2}(x-y)}$.
25. $\frac{5 b c-c^{2}}{(b+c)(b-c)^{2}}$.
26. $\frac{x+y}{x y}$.
27. $\frac{4 a^{2}+b^{2}}{b(2 a+b)}$.
$17 \frac{x-1}{x^{3}+1}$.
28. $\frac{b^{2}}{b^{3}+8}$.
29. $\frac{x\left(x^{2}-2 y^{2}\right)}{x^{3}-y^{3}}$.
30. $\frac{2(a+2)}{(a-2)(a-1)(\alpha+5)}$.
31. $\frac{x^{2}}{x-1}$.
32. $\frac{2+a-2 a^{2}}{2+a}$.
33. $\frac{x^{4}-x^{2}+1}{x^{2}(x+1)}$.
34. $\frac{8}{x(x-2)(x-4)}$.
35. $\frac{9 x+7}{4 x^{2}-1}$ 26. $\frac{8-11 a^{2}}{6\left(1-a^{2}\right)}$. 27. $\frac{15}{2\left(9-4 x^{2}\right)}$. 28. $\frac{x^{2}}{(x-a)^{3}}$.
36. $\frac{2 a^{2}+5 a+7}{(a+1)^{4}}$.
37. $\frac{2}{(2 y-1)(y+1)(2 y-3)}$.
38. $\frac{7}{(4-x)(3+x)}$.
39. 0 .
40. $\frac{1}{3+x}$.
41. $\frac{4 x^{2}}{(x-2)^{2}\left(x^{2}+4\right)^{\circ}} \quad 34$.
42. $\frac{7 y}{(x-3 y)(x-2 y)(x+2 y)}$.
$\frac{2}{(y-2)(y-3)(y-4)}$.
43. $\frac{a^{2} b}{a^{3}-b^{3}}$.
44. 0 .
45. 0.
1. $\frac{x^{3}-2 a x^{2}-a^{3}}{(x+a)(x-a)^{3}}$.
2. $\frac{4+7 x^{2}}{16-x^{4}}$.
3. $\frac{3-4 x^{2}-x^{4}}{2\left(1-x^{4}\right)}$.
4. $\frac{16\left(m^{2}+5\right)}{3\left(m^{4}-16\right)}$.
5. $\frac{a^{4}+a^{2} b^{2}+2 b^{4}}{a^{4}-b^{4}}$.
6. $\frac{x}{(x-2)^{2}(x-4)}$.
7. $\frac{18}{x(x-6)}$.
XV. f. Page 91.
8. $\frac{1-6 x^{2}}{1-4 x^{2}}$.
9. $\frac{1+a}{9-a^{2}}$.
10. $\frac{4 a-5}{6\left(a^{2}-1\right)}$.
11. $\frac{12 y^{2}-4 y+7}{3\left(4 y^{2}-9\right)}$.
12. 0 .
13. $\frac{a}{a+b}$. 7. 0 .
14. $\frac{2 x^{3} y^{3}}{x^{6}-y^{6}}$.
15. 0 .
16. $\frac{2 x}{(x-a)(x-b)}$.
17. $\frac{3 x^{2}+2 x-2}{(x-1)^{2}(2 x-1)}$.
18. $\frac{b^{2}}{(a-b)^{3}}$.
19.

$\frac{x+c}{(x-a)(x-b)}$.
14.
$\frac{a-z}{(a-x)(a-y)}$.
15. $\frac{b}{a+b}$.
16. $\frac{2 a\left(2 a^{2}-5 x^{2}\right)}{\left(a^{2}-x^{2}\right)\left(a^{2}-4 x^{2}\right)}$.
17. $\frac{48 x^{3}}{\left(a^{2}-x^{2}\right)\left(a^{2}-9 x^{2}\right)}$.
18. 0 .
19. $\frac{a^{2}+b^{2}+c^{2}-b c-c a-a b}{(b-c)(c-a)(a-b)}$.
20. $\frac{2\left(y z+z x+x y-x^{2}-y^{2}-z^{2}\right)}{(y-z)(z-x)(x-y)}$.
21. $0 . \quad$ 22. $\frac{a^{2} x}{x^{4}-a^{4}} . \quad$ 23. $\frac{2 x^{4}}{a^{8}-x^{8}} \quad$ 24. 0 . 25. $\frac{8 x^{2}}{(x+2)^{2}(x-2)^{2}}$.
XV. g. Page 95.
2. $\frac{a d}{b d-c}$.
3. $\frac{a^{2}}{1+a}$.
4. $b(1-a)$.
5. $a+x$.
6. $\frac{1}{x y}$.
7. b.
8. p^{2}.
9. $\frac{a(a-3)}{a-4}$.
10. $\frac{y}{3}$.
11. $\frac{n+1}{n^{2}(n+4)}$.
12. $\frac{x+1}{x-1}$.
13. $\frac{b+4}{b+2}$.
14. $a-b$.
15. $\frac{2 c d}{c^{2}+d^{2}}$.
16. b.
17. $\frac{4(x-1)}{7(x+4)}$.
18. $\frac{2 \alpha+1}{\alpha+1}$.
19. $\frac{x^{3}}{x^{2}-1}$.
20. $\frac{5 d-2 c}{4 d-c}$.
21. $\frac{x(x-1)}{x^{2}+x-1}$.
22. $\frac{x^{2}+2}{x\left(x^{2}+3\right)}$.
23. $1-y$.
24. $1+x$.
25. $\frac{2+y}{2}$.
26. $\frac{a(d f-e)}{b d f-b e-c f}$.
27. $x-1$.
28. $\frac{c}{c-3 a}$.
XV. h. Page 96.

1. $\frac{1-x}{1+x}$.
2. $\frac{4 x+1}{3 x+1}$.
3. $\frac{a-b}{a+b}$.
4. $-\frac{1}{a+2 b}$.
5. $\frac{1}{a-x}$.
6. $2 x$.
7. $\frac{2 y\left(3 x^{2}+y^{2}\right)}{x^{2}-y^{2}}$.
8. $\frac{b x-c}{x-1}$.
9. $\frac{10}{(x-2)(x-7)}$.
10. $\frac{1}{3}$.
11. $\frac{2}{x(x+a)}$.
12. 2 .
13. $\frac{2 x+3}{3(x+6)}$.
14. $\frac{2 a x}{\left(x^{2}-a^{2}\right)(x-2 a)^{2}(x+2 a)}$.
15. $\overline{\left(x^{2}-a^{2}\right)(x-2 a)^{2}(x+2 \alpha)}$.
16. 0 .
17. 0.
1. 1 .
2.
3. 4. 24. 0 .
1. $\frac{a c+b d}{a c-b d}$
2. $\frac{x-1}{x^{2}\left(1+x^{2}\right)}$.
3. $-\frac{a}{2}$.
4. $\frac{15 a-2}{9 a}$ 19. 1 .
5. $\frac{4 a^{5} b^{2}}{a^{8}-256 b^{8}}$
6. $\frac{2(3 b+2)}{2 b-1}$.
7. 8.
1. $\frac{x}{(x-y)^{4}}$.
2. $\frac{2 m^{2}}{m^{2}-1}$.

Miscellaneous Examples III. Page 97.

1. $\frac{x-1}{x+1}$.
2. $\frac{2}{a+2}$.
3. $m+n-a$.
4. $\frac{8 x y}{x^{2}-4 y^{2}}$.
5. $\frac{1}{1-4 x^{2}}$.
6. $\frac{2 x+3}{3 x-4}$.
7. $\frac{2 x+1}{x^{3}-1}$.
8. $\frac{y}{y^{2}-9 x^{2}}$.
9. $\frac{2 x y}{x^{2}-y^{2}}$.
10. $\frac{x+y}{y}$.
11. $-a b x$.
12. $\frac{1}{6(3 a-2)}$.
13. $-\frac{1}{a b}$.
14. $\frac{1}{a^{2} b(b-a)}$.
15. $\frac{x^{2}+x-6}{x^{2}-1}$.
16. $\frac{x^{4}-x^{2} y^{2}+y^{4}}{x^{2}-y^{2}}$.
17. $\frac{c+a}{a-b}$.
18. $\frac{x-4}{x-1}$.
19. $x \rightarrow y$.
20. $\frac{x y}{x+y}$.
21. $\frac{x-2}{x-1}$.
XVI. a. Page 101. 1. 3. 2. 4. 3. -1 .
22. 7.
1. 19 .
2. $\frac{12}{5}$.
3. $\frac{9}{4}$.
4. 9 . 0 .
5. -3 .
6. $3 \frac{1}{3}$.
7. $\frac{2}{15}$.
8. $-\frac{5}{2}$.
9. 0 .
10. -2 .
11. 5.
1. 10 .
2. 0 .
3. 13.
1. 2.
1. -10 .
2. $\frac{1}{6}$.
3. 3.
1. $\frac{7}{6}$.
2. $\frac{15}{4}$.
3. 3 .
XVI. b. Page 104.
4. $a-b$.
5. $\frac{5 a}{4}$.
6. $a+b$.
7. $-a b$.
8. $a-b$.
9. $\frac{c^{2}-c d+d^{2}}{c-d}$.
10. $a+b+c$.
11. $a-b$.
12. $\frac{2 a+b}{2 a b}$.
13. $a+b$.
14. $2 a+3 b$.
15. 0 .
16. $\frac{a b^{2}+b c^{2}+c a^{2}}{a^{2} b+b^{2} c+c^{2} \text {. }}$.
17. $\frac{2 b^{2}-a^{2}-c^{2}}{2(a-b)}$.
18. q.
19. $a^{2}-c^{2}$.
20. $\frac{m+n}{2}$.
21. $x=b, y=-a$.
22. $x=c+d, y=c-d$.
23. $x=\frac{b c}{b-a}, y=\frac{a c}{b-a}$.
24. $x=2 a, y=3 b$.
25. $x=a, y=b$.
26. $x=\frac{b^{2}}{a}, y=-\frac{a^{2}}{b}$.
27. $x=\frac{a+b}{2}, y=\frac{b-a}{2}$.
28. $x=(a+b)^{2}, y=a^{2}-b^{2}$.
29. $x=p q(p+q), y=p q(p-q)$.
30. $x=a-2 b, y=2 a-b$.

Miscellaneous Examples IV. Page 105. 1. $1 \frac{6}{35}$. 2. 7.
3. $\frac{2}{3}$.
4. $4 \frac{1}{2}$.
5. $1 \frac{2}{9}$.
6. $\frac{3}{25}$.
7. $13 \frac{6}{7}$.
8. $-\frac{2}{5}$
9. $\frac{(a-b)^{2}}{a+b} \cdot$ 10. $\frac{b c}{a d}$.
11. $\frac{a}{a+b}$.
12. $\frac{2 a}{3}$.
13. $x=2, y=-1$.
14. $x=\frac{1}{50}, y=\frac{29}{10}$.
15. $x=7 \frac{1}{10}, y=2$.
16. $x=\frac{33}{10}, y=\frac{9}{20}$.
17. $x=11, y=8$.
18. $x=\frac{c(a+b)}{a^{2}+b^{2}}, y=\frac{c(b-a)}{a^{2}+b^{2}}$.
19. $a=17, b=-31$.
XVII. Page 108.

1. $\frac{11}{24}$.
2. $\frac{15}{32}$.
3. $\frac{17}{35}$.
4. $\frac{16}{29}$.
5. $\frac{14}{27}$.
6. $49 \frac{1}{11}^{\prime}$ past 9 .
7. $18 \frac{6}{11}{ }^{\prime}$ and 36^{\prime} past 5 .
8. 48^{\prime} past 10 .
9. $38 \frac{2}{11}$ past 1 .
10. $10 \frac{1}{1} \frac{0}{1}$ and $43 \frac{7}{11}^{\prime}$ past 5 .
11. $16 \frac{4}{11}{ }^{\prime}$ and $49 \frac{1}{11}^{\prime}$ past 12 .
12. 15 horses, 16 cows.
13. Cloth 15d., canvas $6 d$.
14. $\frac{(p+1) a}{2 p+1}$ miles.
15. Males 15,500 , females 17,500 .
16. $\frac{n a}{a+2 b}$ hours, $\frac{n a(a+b)}{b}$ miles.
17. $\frac{c(n+a)}{a}$ miles.
18. £ 840 .
19. $A 4 \frac{1}{2}$ miles, $B 4$ miles, $C 3 \frac{3}{4}$ miles.

Miscellaneous Examples V. Page 110. 1. 400. 2. 350.
3. $A £ 7.10 s ., B £ 9, C^{\prime} £ 7.4 s$.
4. $20,24,17$.
5. 100,120 .
6. $15 \mathrm{ft} .9 \mathrm{in} ., 4 \mathrm{ft} .6 \mathrm{in}$. 7. $23 \frac{2}{5}, 15 \frac{3}{5}$.
8. $76 \frac{1}{2}, 202 \frac{1}{2}$.
9. 55.
10. 72,110 .
11. $\frac{29}{91}$.
12. 27.
13. 5s. 6d., 7s. $4 d$.
14. 240 .
15. 17,23 .
16. $\frac{53}{112}$.
18. 59.
19. 107.
17. £4. 16s., £7. $4 s$.
20. 14s., 16s.

Examples XVIII. Page 114. 1. a^{15}. 2. a^{8}. 3. $2 x^{8}$.
4. x^{3}.
5. a.
6. 1 .
7. $\frac{1}{9}$.
8. $2 a^{6} b^{6}$.
9. 6 .
10. $1 \frac{1}{2}$.
11. 4.
12. -3 .
13. $a^{9 p}$.
14. 1.
15. $\frac{1}{a^{3 m n}}$.
16. 1.
17. $\frac{1}{2}$.
18. $(a+b)^{4}$.
19. $(a-b)^{2}$. 20. $\frac{1}{(x+y)^{m}}$.
21. $\frac{a^{p}}{3 b^{q}}$.
22. $\quad b^{m} c^{n} ; 18$.

Miscellaneous Examples VI. Page 115.

1. $\frac{1}{8}$.
2. $x^{5}+(\alpha-1) x^{4} y+x^{3} y^{2}+x^{2} y^{3}+(a-1) x y^{4}+y^{5} ; m x^{3}+3 x+7$.
3. $2 x^{2}+2 x+3$; $\left(2 x^{2}+2 x+3\right)\left(x^{2}-x+4\right)\left(x^{2}+x+4\right)$.
4. (i) $(x-1)^{2}$; (ii) $\frac{x^{2}+y^{2}}{2\left(x^{4}+x^{3} y^{2}+y^{4}\right)}$.
5. (i) $9 \frac{2}{5}$;
(ii) $\frac{m+n}{2}$;
(iii) $x=4, y=8$.
6. 6 ft ., 3 ft . 7. 4 .
7. $(a+1) x^{2}+\left(a^{2}+1\right) x+a^{3} ;-\frac{5}{8}$.
8. $\frac{x^{2}+3 x-10}{x^{2}-x-12}$.
9.

(i) $3 y-2 x$;
(ii) $\frac{a(2 a+b)}{(2 a-b)^{2}}$.
11. (i) 4 ; (ii) $x=3 \frac{1}{2}, y=4$; (iii) $5 a=b$.
12. $4 \mathrm{hrs} .5 \frac{5}{11} \mathrm{~min}$; $4 \mathrm{hrs} .38 \frac{2}{11} \mathrm{~min}$.
13. (i) $\frac{7}{24}$; (ii) $9 \frac{11}{4}$.
14. $x^{2}+4 y^{2}+9 z^{2}+6 y z+3 x z-2 x y$.
16. $\frac{x^{2}+x-12}{x^{2}-x-12}$.
15. 250.
18. (i) 23 ; (ii) $\frac{a}{a+b}$; (iii) $x=1, y=3$.
17. (i) $-\frac{1}{x}$; (ii) $\frac{a^{4}+b^{4}}{a^{4}-b^{4}}$.
20. (i) 4 ;
(ii) $2 \frac{2}{5}$; (iii) $2 \frac{5}{8}$.
19. £125, £275.
22. $\frac{4 x+3}{3 x^{2}-5 x+7} ; \frac{1}{35}$.
21. $\frac{5 a x(x-a)}{x+a}$.
24. $\frac{4}{5}, 2, \frac{5 a}{3}, \frac{8 a}{3}$.
25. (i) $\frac{b-c}{2 a}$;
(ii) $\frac{a(a-2 b)}{b-2 a}$;
(iii) $x=5, y=-1$.
26. 14 feet, 3 feet.
27. $\frac{24}{115}$.
28. $-\frac{1}{7}$,
29. $\frac{2}{5}$.
30.
(i) $\frac{x+y}{1-x y}$;
(ii) $\frac{x^{3}}{1+x^{3}}$.
31. (i) $a+3 b$;
(ii) $\frac{2 a}{3}$.
32. £17, £26.
33. $1 \frac{1}{3}$.
34. $£ 140$.

EUCLID'S ELEMENTS.

BOOK I.

Definitions.

1. A point is that which has position, but no magnitude.
2. A line is that which has length without breadth.
3. The extremities of a line are points, and the intersection of two lines is a point.
4. A straight line is that which lies evenly between its extreme points.

Any portion cut off from a straight line is called a segment of it.
5. A surface (or superficies) is that which has length and breadth, but no thickness.
6. The boundaries of a surface are lines.
7. A plane surface is one in which any two points being taken, the straight line between them lies wholly in that surface.

A plane surface is frequently referred to simply as a plane.
Note. Euclid regards a point merely as a mark of position, and he therefore attaches to it no idea of size and shape.

Similarly he considers that the properties of a line arise only from its length and position, without reference to that minute breadth which every line must really have if actually drawn, even though the most perfect instruments are used.

The definition of a surface is to be understood in a similar way.
8. A plane angle is the inclination of two lines to one another, which meet together, but are not in the same direction.

[Definition 8 is not required in Euclid's Geometry, the only angles enuployed by him being those formed by straight lines. See Def. 9.]
9. A plane rectilineal angle is the inclination of two straight lines to one another, which meet together, but are not in the same straight line.

The point at which the straight lines meet is called the vertex of the angle, and the straight lines themselves the arms of the angle.

Note. When there are several angles at one point, each is expressed by three letters, of which the letter that refers to the vertex is put between the other two. Thus the angle contained by the straight lines $O A, O B$ is named the angle $A O B$ or BOA ; and the angle contained by OA, OC is named the angle AOC or COA. But if there is only one angle at a point, it may be expressed by a single letter, as the angle at O .

Of the two straight lines $O B, O C$ shewn in the adjoining diagram, we recognize that OC is more inclined than $O B$ to the straight line $O A$: this we express by saying that the angle AOC is greater than the angle AOB. Thus an angle must be regarded as having magnitude.

It must be carefully observed that the size of an angle in no way depends on the length of its arms, but only on their inclination to one another.

The angle $A O C$ is the sum of the angles $A O B$ and $B O C$; and $A O B$ is the difference of the angles $A O C$ and $B O C$.
[Another view of an angle is recognized in many branches of mathematics ; and though not employed by Euclid, it is here given because it furnishes more clearly than any other a conception of what is meant by the magnitude of an angle.

Suppose that the straight line OP in the diagram is capable of revolution about the point O, like the hand of a watch, but in the opposite direction; and suppose that in this way it has passed successively from the position OA to the positions occupied by $O B$ and $O C$. Such a line must have undergone more turning in passing from OA to

$O C$, than in passing from $O A$ to $O B$; and consequently the angle AOC is said to be greater than the angle AOB.]

Angles which lie on either side of a common arm are called adjacent angles.

For example, when one straight line OC is drawn from a point in another straight line AB , the angles $\mathrm{COA}, \mathrm{COB}$ are adjacent.

When two straight lines, such as $A B, C D$, cross one another at E, the two angles CEA, BED are said to be vertically opposite. The two angles CEB, AED are also vertically opposite to one another.

10. When a straight line standing on another straight line makes the adjacent angles equal to one another, each of the angles is called a right angle; and the straight line which stands on the other is called a perpendicular to it.

11. An obtuse angle is an angle which is greater than a right angle.

12. An acute angle is an angle which is less than a right angle.

[In the adjoining figure the straight line OB may be supposed to have arrived at its present position, from the position occupied by OA, by revolution about the point O in either of the two directions indicated by the arrows: thus two straight lines drawn from a point may be considered as forming two angles (marked (i) and (ii) in the figure), of
 which the greater (ii) is said to be reflex.

If the arms $O A, O B$ are in the same straight line, the angle formed by them on either side is called a straight angle.]

13. A term or boundary is the extremity of anything.
14. Any portion of a plane surface bounded by one or more lines is called a plane figure.

The sum of the bounding lines is called the perimeter of the figure.
Two figures are said to be equal in area when they enclose equal portions of a plane surface.
15. A circle is a plane figure contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference are equal to one another; this point is called the centre of the circle.

16. A radius of a circle is a straight line drawn from the centre to the circumference.
17. A diameter of a circle is a straight line drawn through the centre, and terminated both ways by the circumference.
18. A semicircle is the figure bounded by a diameter of a circle and the part of the circumference cut off by the diameter.

19. A segment of a circle is the figure bounded by a straight line and the part of the circumference which it cuts off.

20. Rectilineal figures are those which are bounded by straight lines.
21. A triangle is a plane figure bounded by three straight lines.

Any one of the angular points of a triangle may be regarded as its vertex ; and the opposite side is then called the base.
22. A quadrilateral is a plane figure bounded by four straight lines.

The straight line which joins opposite angular points in a quadrilateral is called a diagonal.
23. A polygon is a plane figure bounded by more than four straight lines.

Triangles.
24. An equilateral triangle is a triangle whose three sides are equal.

25. An isosceles triangle is a triangle two of whose sides are equal.

26. A scalene triangle is a triangle which has three unequal sides.

27. A right-angled triangle is a triangle which has a right angle.

The side opposite to the right angle in a right-angled triangle is called the hypotenuse.
28. An obtuse-angled triangle is a triangle which has an obtuse angle.

29. An acute-angled triangle is a triangle which has three acute angles.

[It will be seen hereafter (Book I. Proposition 17) that every triangle must have at least two acute angles.]
30. A square is a four-sided figure which has all its sides equal and all its angles right angles.
[It may be shewn that if a quadrilateral has all its sides equal and one angle a right angle, then all its
 angles will be right angles.]
31. An oblong is a four-sided figure which has all its angles right angles, but not all its sides equal.
32. A rhombus is a four-sided figure which has all its sides equal, but its angles are not right angles.

33. A rhomboid is a four-sided figure which has its opposite sides equal to one another, but all its sides are not equal nor its angles right angles.
34. All other four-sided figures are called trapeziums.

It is usual now to restrict the term trapezium to a quadrilateral which has two of its sides parallel. [See Def. 35.]

35. Parallel straight lines are such as, being in the same plane, do not meet, however far they are produced in either direction.
36. A Parallelogram is a four-sided figure which has its opposite sides parallel.

37. A rectangle is a parallelogram which has one of its angles a right angle.

The Postulates.

Let it be granted,

1. That a straight line may be drawn from any one point to any other point.
2. That a finite, that is to say a terminated, straight line may be produced to any length in that straight line.
3. That a circle may be described from any centre, at any distance from that centre, that is, with a radius equal to any finite straight line drawn from the centre.

Notes on the Postulates.

1. In order to draw the diagrams required in Euclid's Geometry certain instruments are necessary. These are
(i) A ruler with which to draw straight lines.
(ii) A pair of compasses with which to draw circles.

In the Postulates, or requests, Euclid claims the use of these instruments, and assumes that they suffice for the purposes mentioned above.
2. It is important to notice that the Postulates include no means of direct measurement: hence the straight ruler is not supposed to be graduated; and the compasses are not to be employed for transferring distances from one part of a diagram to another.
3. When we draw a straight line from the point A to the point B, we are said to join $A B$.

To produce a straight line means to prolong or lengthen it.
The expression to describe is used in Geometry in the sense of to draw.

On the Axioms.

The science of Geometry is based upon certain simple statements, the truth of which is so evident that they are accepted without proof.

These self-evident truths, called by Euclid Common Notions, are known as the Axioms.

General Axioms.

1. Things which are equal to the same thing are equal to one another.
2. If equals be added to equals, the wholes are equal.
3. If equals be taken from equals, the remainders are equal.
4. If equals be added to unequals, the wholes are unequal, the greater sum being that which includes the greater of the unequals.
5. If equals be taken from unequals, the remainders are unequal, the greater remainder being that which is left from the greater of the unequals.
6. Things which are double of the same thing, or of equal things, are equal to one another.
7. Things which are halves of the same thing, or of equal things, are equal to one another.
9.* The whole is greater than its part.
*'To preserve the classification of general and geometrical axioms, we have placed Euclid's ninth axiom before the eighth.

Geometrical Axioms.

8. Magnitudes which can be made to coincide with one another, are equal.
9. Tuo straight lines cannot enclose a space.
10. All right angles are equal.
11. If a straight line meet two straight lines so us to make the interior angles on one side of it together less than two right angles, these straight lines will meet if continually produced on the side on which are the angles which are together less than two right angles.

That is to say, if the two straight lines $A B$ and $C D$ are met by the straight line $E H$ at F and G, in such a way that the angles BFG, DGF are together less than two right angles, it is asserted that $A B$ and $C D$ will meet if continually produced in the direction of B and D.

Notes on the Axioms.

1. The necessary characteristics of an Axiom are
(i) That it should be self-evident; that is, that its truth should be immediately accepted without proof.
(ii) That it should be fundamental; that is, that its truth should not be derivable from any other truth more simple than itself.
(iii) That it should supply a basis for the establishment of further truths.

These characteristics may be summed up in the following definition.

Definition. An Axiom is a self-evident truth, which neither requires nor is capable of proof, but which serves as a foundation for future reasoning.
2. Euclid's Axioms may be classified as general and geometrical.

General Axioms apply to magnitudes of all kinds. Geometrical Axioms refer specially to geometrical magnitudes, as lines, angles, and figures.
3. Axiom 8 is Euclid's test of the equality of two geometrical magnitudes. It implies that any line, angle, or figure, may be taken up from its position, and without change in size or form, laid down upon a second line, angle, or figure, for the purpose of comparison, and it states that two such magnitudes are equal when one can be exactly placed over the other without overlapping.

This process is called superposition, and the first magnitude is said to be applied to the other.
4. Axiom 12 has been objected to on the double ground that it cannot be considered self-evident, and that its truth may be deduced from simpler principles. It is employed for the first time in the 29th Proposition of Book I., where a short discussion of the difficulty will be found.

Introductory.

1. Little is known of Euclid beyond the fact that he lived about three centuries before Christ (325-285) at Alexandria, where he became famous as a writer and teacher of Mathematics.

Among the works ascribed to him, the best known and most important is The Elements, written in Greek, and consisting of Thirteen Books. Of these it is now usual to read Books I.-IV. and VI. (which deal with Plane Geometry), together with parts of Books XI. and XII. (on the Geometry of Solids). The remaining Books deal with subjects which belong to the theory of Arithmetic.
2. Plane Geometry deals with the properties of all lines and figures that may be drawn upon a plane surface.

Euclid in his first Six Books confines himself to the properties of straight lines, rectilineal figures, and circles.
3. The subject is divided into a number of separate discussions, called propositions.

Propositions are of two kinds, Problems and Theorems.
A Problem proposes to perform some geometrical construction, such as to draw some particular line, or to construct some required figure.

A Theorem proposes to prove the truth of some geometrical statement.
4. A Proposition consists of the following parts :

The General Enunciation, the Particular Enunciation, the Construction, and the Proof.
(i) The General Enunciation is a preliminary statement, describing in general terms the purpose of the proposition.
(ii) The Particular Enunciation repeats in special terms the statement already made, and refers it to a diagram, which enables the reader to follow the reasoning more easily.
(iii) The Construction then directs the drawing of such straight lines and circles as may be required to effect the purpose of a problem, or to prove the truth of a theorem.
(iv) The Proof shews that the object proposed in a problem has been accomplished, or that the property stated in a theorem is true.
5. Euclid's reasoning is said to be Deductive, because by a connected chain of argument it deduces new truths from truths already proved or admitted. This each proposition, though in one sense complete in itself, is derived from the Postulates, Axioms, or former propositions, and itself leads up to subsequent propositions.
6. The initial letters Q.e.f., placed at the end of a problem, stand for Quod erat Faciendum, which was to be done.

The letters Q.E.D. are appended to a theorem, and stand for Quod erat Demonstrandum, which was to be proved.
7. A Corollary is a statement the truth of which follows readily from an established proposition; it is therefore appended to the proposition as an inference or deduction, which usually requires no further proof.
8. The attention of the beginner is drawn to the special use of the future tense in the Particular Enunciations of Euclid's propositions.

The future is only used in a statement of which the truth is about to be proved. Thus: "The triangle ABC shall be equilateral" means that the triangle has yet to be proved equilateral. While, "The triangle ABC is equilateral" means that the triangle has already been proved (or given) equilateral.
9. The following symbols and abbreviations may be employed in writing out the propositions of Book I., though their use is not recommended to beginners.

and all obvious contractions of words, such as opp., adj., diag., etc., for opposite, adjacent, diagonal, etc.

SECTION I.

Proposition 1. Problem.

To describe an equilateral triangle on a given finite straight line.

Let $A B$ be the given straight line.
It is required to describe an equilateral triangle on AB .
Construction. With centre A, and radius AB, describe the circle BCD. Post. 3. With centre B, and radius BA, describe the circle ACE. Post. 3.
From the point C at which the circles cut one another, draw the straight lines $C A$ and $C B$ to the points A and B.

Post. 1.

Then shall the triangle ABC be equilateral.

Proof. Because A is the centre of the circle BCD, therefore $A C$ is equal to $A B$.

Def. 15.
And because B is the centre of the circle ACE,
therefore $B C$ is equal to $A B$. Def. 15.
Therefore $A C$ and $B C$ are each equal to $A B$.
But things which are equal to the same thing are equal to one another.

Therefore $A C$ is equal to $B C$.
Therefore $A C, A B, B C$ are equal to one another.
Therefore the triangle $A B C$ is equilateral ;and it is described on the given straight line AB. Q.E.F.

Proposition 2. Problem.

From a given point to draw a straight line equal to a given straight line.

Let A be the given point, and $B C$ the given straight line. It is required to draw from A a straight line equal to BC .

Construction. Join AB ; Post. 1. and on $A B$ describe an equilateral triangle $D A B$. I. 1. With centre B, and radius BC, describe the circle CGH. Post. 3.
Produce DB to meet the circle CGH at G. Post. 2. With centre D, and radius DG, describe the circle GKF.

Produce DA to meet the circle GKF at F. Post. 2. Then AF shall be equal to BC .

Proof. Because B is the centre of the circle CGH, therefore $B C$ is equal to $B G$.

Def. 15.
And because D is the centre of the circle GKF, therefore DF is equal to DG. Def. 15.
And DA, a part of DF, is equal to DB, a part of DG ; Def. 24. therefore the remainder $A F$ is equal to the remainder $B G$.
$A x .3$.
But $B C$ has been proved equal to $B G$; therefore $A F$ and $B C$ are each equal to $B G$.
And things which are equal to the same thing are equal to one another.
$A x .1$.
Therefore AF is equal to $B C$;
and it has been drawn from the given point A. Q.E.F.

Proposition 3. Problem.

From the greater of two given straight lines to cut off a part equal to the less.

Let $A B$ and C be the two given straight lines, of which $A B$ is the greater.

It is required to cut off from AB a part equal to C .
Construction. From the point A draw the straight line
$A D$ equal to C; I. 2.
and with centre A and radius AD, describe the circle DEF, cutting $A B$ at E.

Then AE shall be equal to C .
Proof. Because A is the centre of the circle DEF, therefore $A E$ is equal to AD. Def. 15.

But C is equal to AD. Constr.
Therefore $A E$ and C are each equal to $A D$.
Therefore AE is equal to C ; $\quad A x .1$. and it has been cut off from the given straight line AB.
Q.E.F.

HXERCISES ON PROPOSITIONS 1 TO 3.

1. If the two circles in Proposition 1 cut one another again at F, prove that $A F B$ is an equilateral triangle.
2. If the two circles in Proposition 1 cut one another at C and F, prove that the figure $A C B F$ is a rhombus.
3. $A B$ is a straight line of given length : shew how to draw from A a line double the length of $A B$.
4. Two circles are drawn with the same centre O, and two radii $O A, O B$ are drawn in the smaller circle. If $O A, O B$ are produced to cut the outer circle at D and E, prove that $A D=B E$.
5. $A B$ is a straight line, and P, Q are two points, one on each side of $A B$. Shew how to find points in $A B$, whose distance from P is equal to PQ. How many such points will there be ?
6. In the figure of Proposition 2, if AB is equal to BC , shew that D, the vertex of the equilateral triangle, will fall on the circumference of the circle CGH.
7. In Proposition 2 the point A may be joined to either extremity of BC. Draw the figure, and prove the proposition in the case when A is joined to C.
8. On a given straight line AB describe an isosceles triangle having each of its equal sides equal to a given straight line PQ.
9. On a given base describe an isosceles triangle having each of its equal sides double of the base.
10. In a given straight line the points A, M, N, B are taken in order. On $A B$ describe a triangle $A B C$, such that the side $A C$ may be equal to $A N$, and the side $B C$ to $B M$.

NOTE ON PROPOSITIONS 2 AND 3.

Propositions 2 and 3 are rendered necessary by the restriction tacitly imposed by Euclid, that compasses shall not be used to transfer distances. [See Notes on the Postulates.]

In carrying out the construction of Prop. 2 the point A may be joined to either extremity of the line $B C$; the equilateral triangle may be described on either side of the line so drawn ; and the sides of the equilateral triangle may be produced in either direction. Thus there are in general $2 \times 2 \times 2$, or eight, possible constructions. The student should exercise himself in drawing the various figures that may arise.

Proposition 4. Theorem.

If two triangles have two sides of the one equal to two sides of the other, each to each, and have also the angles contained by those sides equal, then the triangles shall be equal in all respects; that is to say, their bases or third sides shall be equal, and their remaining angles shall be equal, each to each, namely those to which the equal sides are opposite; and the triangles shall be equal in area.

Let ABC, DEF be two triangles, in which the side $A B$ is equal to the side $D E$, the side $A C$ is equal to the side DF, and the contained angle BAC is equal to the contained angle EDF.

Then (i) the base BC shall be equal to the base EF ;
(ii) the angle ABC shall be equal to the angle DEF;
(iii) the angle ACB shall be equal to the angle DFE;
(iv) the triangle ABC shall be equal to the triangle DEF in area.
Proof. If the triangle $A B C$ be applied to the triangle DEF, so that the point A may lie on the point D,
and the straight line $A B$ along the straight line $D E$; then because $A B$ is equal to $D E$,
therefore the point B must coincide with the point E .
And because $A B$ falls along $D E$,
and the angle BAC is. equal to the angle EDF, Hyp. therefore $A C$ must fall along DF.
And because $A C$ is equal to $D F$,
therefore the point C must coincide with the point F.
Then since B coincides with E, and C with F, therefore the base BC must coincide with the base EF;
for if not, two straight lines would enclose a space ; which is impossible. $A x .10$. Thus the base BC coincides with the base EF, and is therefore equal to it. $A x .8$.
And the remaining angles of the triangle $A B C$ coincide with the remaining angles of the triangle DEF, and are therefore equal to them ;
namely, the angle $A B C$ is equal to the angle $D E F$,
and the angle $A C B$ is equal to the angle DFE.
And the triangle $A B C$ coincides with the triangle DEF, and is therefore equal to it in area. Ax. 8.
That is, the triangles are equal in all respects. Q.E.D.

Note. The sides and angles of a triangle are known as its six parts. A triangle may also be considered in regard to its area.

Two triangles are said to be equal in all respects, or identically equal, when the sides and angles of one are respectively equal to the sides and angles of the other. We have seen that such triangles may be made to coincide with one another by superposition, so that they are also equal in area. [See Note on Axiom 8.]
[It will be shewn later that triangles can be equal in area without being equal in their several parts; that is to say, triangles can have the same area without having the same shape.]

EXERCISES ON PROPOSITION 4.

1. $A B C D$ is a square : prove that the diagonals $A C, B D$ are equal to one another.
2. $A B C D$ is a square, and L, M, and N are the middle points of $A B, B C$, and $C D$: prove that
(i) $\mathrm{LM}=\mathrm{MN}$.
(ii) $\mathrm{AM}=\mathrm{DM}$.
(iii) $\quad \mathrm{AN}=\mathrm{AM}$.
(iv) $\mathrm{BN}=\mathrm{DM}$.
[Draw a separate figure in each case.]
3. $A B C$ is an isosceles triangle: from the equal sides $A B, A C$ two equal parts $A X, A Y$ are cut off, and $B Y$ and $C X$ are joined. Prove that $B Y=C X$.
4. $A B C D$ is a quadrilateral having the opposite sides $B C, A D$ equal, and also the angle $B C D$ equal to the angle $A D C$: prove that $B D$ is equal to $A C$.

Proposition 5. Theorem

The angles at the base of an isosceles triangle are equal to one another; and if the equal sides be produced, the angles on the other side of the base shall also be equal to one another.

Let $A B C$ be an isosceles triangle, in which the side $A B$ is equal to the side $A C$, and let the straight lines $A B, A C$ be produced to D and E.

Then (i) the angle ABC shall be equal to the angle ACB ;
(ii) the angle CBD shall be equal to the angle BCE .

Construction. In BD take any point F;
and from $A E$ cut off a part $A G$ equal to $A F$.
I. 3. Join FC, GB.
Proof. Then in the triangles FAC, GAB,
Because $\left\{\begin{array}{rr}\mathrm{FA} \text { is equal to } \mathrm{GA}, & \text { Constr. } \\ \text { and } \mathrm{AC} \text { is equal to } \mathrm{AB}, & \text { Hyp. }\end{array}\right.$ also the contained angle at A is common to the two triangles:
therefore the triangle $F A C$ is equal to the triangle $G A B$ in all respects ;
I. 4 . that is, the base FC is equal to the base GB, and the angle $A C F$ is equal to the angle $A B G$,
also the angle $A F C$ is equal to the angle $A G B$.
Again, because AF is equal to AG,
and $A B$, a part of $A F$, is equal to $A C$, a part of $A G$; Hyp. therefore the remainder $B F$ is equal to the remainder CG.

Then in the two triangles BFC, CGB,
Because $\left\{\begin{array}{cc}\text { BF is equal to } \mathrm{CG}, & \text { Proved. } \\ \text { and } \mathrm{FC} \text { is equal to } \mathrm{GB}, & \text { Proved. } \\ \text { also the contained angle BFC is } \\ \text { contained angle CGB, } & \end{array}\right.$ therefore the triangle BFC is equal to the triangle CGB in all respects ;
I. 4.
so that the angle FBC is equal to the angle GCB, and the angle BCF to the angle CBG.
Now it has been shewn that the angle ABG is equal to the angle ACF,
and that the angle CBG, a part of ABG, is equal to the angle $B C F$, a part of $A C F$;
therefore the remaining angle $A B C$ is equal to the remaining angle ACB;
$A x .3$.
and these are the angles at the base of the triangle $A B C$.
Also it has been shewn that the angle FBC is equal to the angle GCB;
and these are the angles on the other side of the base. Q.E.D.
Corollary. Hence if a triangle is equilateral it is also equiangular.

Note. The difficulty which beginners find with this proposition arises from the fact that the triangles to be compared overlap one another in the diagram. This difficulty may be diminished by detaching each
 pair of triangles from the rest of the figure, as shewn in the margin.

Proposition 6. Theorem.

If two angles of a triangle be equal to one another, then the sides also which subtend, or are opposite to, the equal angles, shall be equal to one another:

Let $A B C$ be a triangle, in which the angle $A B C$ is equal to the angle $A C B$. Then shall the side AC be equal to the side AB .

Construction. For if AC be not equal to AB , one of them must be greater than the other.

If possible, let AB be the greater ; and from it cut off $B D$ equal to $A C$.
I. 3. Join DC.

Proof. Then in the triangles DBC, ACB, Because $\left\{\begin{array}{cc}\text { DB is equal to } A C, & \text { Constr. } \\ \text { and } B C \text { is common to both, } \\ \text { also the contained angle DBC is equal to the } \\ \text { contained angle ACB; }\end{array}\right.$ Because $\left\{\begin{array}{cc}\text { DB is equal to } A C, & \text { Constr. } \\ \text { and } B C \text { is common to both, } \\ \text { also the contained angle DBC is equal to the } \\ \text { contained angle ACB; }\end{array}\right.$ therefore the triangle DBC is equal to the triangle $A C B$
in area,
the part equal to the whole ; which is absurd. $A x .9$.
Therefore $A B$ is not unequal to $A C$; that is, $A B$ is equal to $A C$.
Q.E.D.

Corollary. Hence if a triangle is equiangular it is also equilateral.

NOTE ON PROPOSITIONS 5 AND 6.

The enunciation of a theorem consists of two clauses. The first clause tells us what we are to assume, and is called the hypothesis ; the second tells us what it is required to prove, and is called the conclusion.

For example, the enunciation of Proposition 5 assumes that in a certain triangle ABC the side $\mathrm{AB}=$ the side AC : this is the hypothesis. From this it is required to prove that the angle $\mathrm{ABC}=$ the angle ACB : this is the conclusion.

If we interchange the hypothesis and conclusion of a theorem, we enunciate a new theorem which is called the converse of the first.

For example, in Prop. 5
it is assumed that $\quad \mathrm{AB}=\mathrm{AC}$;
it is required to prove that the angle $A B C=$ the angle $A C B . \rho$
Now in Prop. 6
it is assumed that the angle $A B C=$ the angle $A C B ;$
it is required to prove that $\quad A B=A C$.
Thus we see that Prop. 6 is the converse of Prop. 5; for the hypothesis of each is the conclusion of the other.

In Proposition 6 Euclid employs for the first time an indirect method of proof frequently used in geometry. It consists in shewing that the theorem cannot be untrue; since, if it were, we should be led to some impossible conclusion. This form of proof is known as Reductio ad Absurdum, and is most commonly used in demonstrating the converse of some foregoing theorem.

The converse of all true theorems are not themselves necessarily true. [See Note on Prop 8.]

EXERCISES ON PROPOSITION 5.

1. $A B C D$ is a rhombus, in which the diagonal $B D$ is drawn : shew that
(i) the angle $A B D=$ the angle $A D B$;
(ii) the angle $C B D=$ the angle $C D B$;
(iii) the angle $A B C=$ the angle $A D C$.
2. $A B C, D B C$ are two isosceles triangles drawn on the same base BC, but on opposite sides of it : prove (by means of 1.5) that the angle $A B D=$ the angle $A C D$.
3. $\mathrm{ABC}, \mathrm{DBC}$ are two isosceles triangles drawn on the same base BC and on the same side of it : employ I. 5 to prove that the angle $A B D=$ the angle $A C D$.

Proposition 7. Theorem

On the same base, and on the same side of it, there cannot be two triangles having their sides which are terminated at one extremity of the base equal to one another, and likewise those which are terminated at the other extremity equal to one another.

If it be possible, on the same base $A B$, and on the same side of it, let there be two triangles $A C B, A D B$ in which the side $A C$ is equal to the side $A D$, and also the side $B C$ is equal to the side $B D$.
Case I. When the vertex of each triangle is without the other triangle.

Construction. Join CD.
Proof. Then in the triangle ACD, because $A C$ is equal to $A D$,

Нур.
therefore the angle $A C D$ is equal to the angle ADC. I. 5.
But the whole angle $A C D$ is greater than its part, the angle BCD ;
therefore also the angle ADC is greater than the angle BCD; still more then is the angle BDC greater than the angle $B C D$.

> Again, in the triangle $B C D$, because $B C$ is equal to $B D$,
therefore the angle BDC is equal to the angle BCD: I. 5. but it was shewn to be greater; which is impossible.

Case II. When one of the vertices, as D, is within the other triangle $A C B$.

Construction. As before, join CD ; and produce $A C, A D$ to E and F.

Proof. Then in the triangle ACD, because $A C$ is equal to $A D$,

Нур.
therefore the angle ECD is equal to the angle FDC,
these being the angles on the other side of the base. I. 5 .
But the angle ECD is greater than its part, the angle BCD; therefore the angle FDC is also greater than the angle

BCD :
still more then is the angle BDC greater than the angle $B C D$.

Again, in the triangle BCD, because $B C$ is equal to $B D$, Hyp.
therefore the angle $B D C$ is equal to the angle $B C D$: I. 5. but it has been shewn to be greater ; which is impossible.

The case in which the vertex of one triangle is on a side of the other needs no demonstration.

Therefore $A C$ cannot be equal to $A D$, and at the same time, BC equal to BD . Q.E.D.

Note. The sides AC, AD are called conterminous sides ; similarly the sides $B C, B D$ are conterminous.

Proposition 8. Theorem.

If two triangles have two sides of the one equal to two sides of the other, each to each, and have likewise their bases equal, then the angle which is contained by the two sides of the one shall be equal to the angle which is contained by the two sides of the other.

Let ABC, DEF be two triangles, in which the side $A B$ is equal to the side $D E$, the side $A C$ is equal to the side $D F$, and the base BC is equal to the base EF .
Then shall the angle BAC be equal to the angle EDF.
Proof. If the triangle ABC be applied to the triangle DEF, so that the point B falls on the point E, and the base BC along the base EF ; then because $B C$ is equal to $E F$, Нур. therefore the point C must coincide with the point F.

Then since BC coincides with EF, it follows that BA and AC must coincide with ED and DF: for if they did not, but took some other position, as EG, GF, then on the same base EF, and on the same side of it, there would be two triangles EDF, EGF, having their conterminous sides equal : namely $E D$ equal to $E G$, and $F D$ equal to $F G$.
But this is impossible.
I. 7.

Therefore the sides BA, AC coincide with the sides ED, DF.
That is, the angle BAC coincides with the angle EDF, and is therefore equal to it.

Note 1. In this Proposition the three sides of one triangle are given equal respectively to the three sides of the other ; and from this it is shewn that the two triangles may be made to coincide with one another.

Hence we are led to the following important Corollary.
Corollary. If in two triangles the three sides of the one are equal to the three sides of the other, each to each, then the triangles are equal in all respects.
[An alternative proof, which is independent of Prop. 7, will be found on page 26.]

Note 2. Proposition 8 furnishes an instance of a true theorem of which the converse is not necessarily true.

It is proved above that if the sides of one triangle are severally equal to the sides of another, then the angles of the first triangle are severally equal to the angles of the second.

The converse of this enunciation would be as follows: If the angles of one triangle are severally equal to the angles of another, then the sides of the first triangle are equal to the sides of the second.

But this, as the diagram in the margin shews, is by no means necessarily true.

EXERCISES ON PROPOSITION 8.

1. Shew (by drawing a diagonal) that the opposite angles of a rhombus are equal.
2. If $A B C D$ is a quadrilateral, in which $A B=C D$ and $A D=C B$, prove that the angle $A D C=$ the angle $A B C$.
3. If $A B C$ and DBC are two isosceles triangles drawn on the same base $B C$, prove (by means of r. 8) that the angle $A B D=$ the angle $A C D$, taking (i) the case where the triangles are on the same side of BC , (ii) the case where they are on opposite sides of BC .
4. If $A B C, D B C$ are two isosceles triangles drawn on opposite sides of the same base $B C$, and if AD be joined, prove that each of the angles BAC, BDC will be divided into two equal parts.
5. If in the figure of Ex. 4 the line $A D$ meets $B C$ in E, prove that $B E=E C$.

Proposition 8. Alternative Proof.

Let $A B C$ and $D E F$ be two triangles, which have the sides $B A, A C$ equal respectively to the sides $E D, D F$, and the base $B C$ equal to the base EF.

Then shall the angle BAC be equal to the angle EDF.
For apply the triangle $A B C$ to the triangle $D E F$, so that B may fall on E, and $B C$ along $E F$, and so that the point A may be on the side of $E F$ remote from D;
then C must fall on F, since $B C$ is equal to $E F$.
Let GEF be the new position of the triangle ABC.
Join DG.
Case I. When DG intersects EF.
Then because ED $=E G$,
\therefore the angle EDG $=$ the angle EGD.
I. 5.

Again because $F D=F G$,
\therefore the angle FDG $=$ the angle FGD.
I. 5.

Hence the whole angle EDF = the whole angle EGF ; Ax. 2. that is, the angle EDF = the angle BAC.

Two cases remain which may be dealt with in a similar manner : namely,

Case II. When DG meets EF prorluced.

Case III. When one pair of sides, as DF, FG are in one straight line,

QUESTIONS AND EXERCISES FOR REVISION.

1. Define adjacent angles, a right angle, vertically opposite angles.
2. Explain the words enunciation, hypothesis, conclusion.
3. Distinguish between the meanings of the following statements :
(i) then AB is equal to PQ ;
(ii) then $A B$ shall be equal to $P Q$.
4. When are two theorems said to be converse to one another. Give an example.
5. Shew by an example that the converse of a true theorem is not itself necessarily true.
6. What is a corollary? Quote the corollary to Proposition 5; and shew how its truth follows from that proposition.
7. Name the six parts of a triangle. When are triangles said to be equal in all respects ?
8. What do you understand by the expression geometrical magnitudes? Give examples?
9. What is meant by superposition? Explain the test by which Euclid determines if two geometrical magnitudes are equal to one another. Illustrate by an example.
10. Quote and explain the third postulate. What restrictions does Euclid impose on the use of compasses, and what problems are thereby marle necessary?
11. Define an axiom. Quote the axioms referred to (i) in Proposition 2 ; (ii) in Proposition 7.
12. Prove by the method of superposition that two squares are equal in area, if a side of one is equal to a side of the other.
13. Two quadrilaterals $A B C D, E F G H$ have the sides $A B, B C$, $C D$, DA equal respectively to the sides $E F, F G, G H, H E$, and have also the angle $B A D$ equal to the angle $F E H$. Shew that the figures may be made to coincide with one another.
14. $A B, A C$ are the equal sides of an isosceles triangle $A B C$; and L, M, N are the middle points of $A B, B C$, and $C A$ respectively : prove that
(i) $L M=M N$.
(ii) $\mathrm{BN}=\mathrm{CL}$.
(iii) the angle $A L M=$ the angle $A N M$.

Proposition 9. Problem.

To bisect a given rectilineal angle, that is, to divide it into two equal parts.

Let $B A C$ be the given angle. It is required to bisect the angle BAC.
Construction. In AB take any point D ; and from $A C$ cut off $A E$ equal to $A D$. I. 3. Join DE;
and on $D E$, on the side remote from A, describe an equilateral triangle DEF.

Then shall the straight line AF bisect the angle BAC.
Proof. For in the two triangles DAF, EAF,
Because $\left\{\begin{array}{c}\text { DA is equal to EA, } \\ \text { and AF is common to both; } \\ \text { and the third side DF is equal to the third side } \\ \text { EF ; } \\ \text { Def. } 24 .\end{array}\right.$
therefore the angle DAF is equal to the angle EAF. I. 8. Therefore the given angle BAC is bisected by the straight line $A F$.

EXERCISES.

1. If in the above figure the equilateral triangle DFE were described on the same side of DE as A, what different cases would arise? And under what circumstances would the construction fail?
2. In the same figure, shew that AF also bisects the angle DFE.
3. Divide an angle into four equal parts.

Proposition 10. Problem.

To bisect a given finite straight line, that is, to divide it into two equal parts.

Let $A B$ be the given straight line. It is required to divide AB into two equal parts.

Constr: On AB describe an equilateral triangle ABC ; I. 1. and bisect the angle ACB by the straight line CD, meeting $A B$ at D.
I. 9 . Then shall AB be bisected at the point D .
Proof. For in the triangles $A C D, B C D$,
Because $\left\{\begin{array}{cc}\text { AC is equal to } B C, & \text { Def. } 24 . \\ \text { and CD is conmon to both ; } & \\ \text { also the contained angle } A C D \text { is equal to the con- } \\ \text { tained angle } B C D \text {; } & \text { Constr. }\end{array}\right.$ therefore the triangle $A C D$ is equal to the triangle $B C D$ in all respects :
I. 4. so that the base $A D$ is equal to the base $B D$.
Therefore the straight line $A B$ is bisected at the point D.
Q.E.F.

EXERCISES.

1. Shew that the straight line which bisects the vertical angle of an isosceles triangle, also bisects the base.
2. On a given base describe an isosceles triangle such that the sum of its equal sides may be equal to a given straight line.

Proposition 11. Problem.

To draw a straight line at right angles to a given straight line, from a given point in the same.

Let $A B$ be the given straight line, and C the given point in it.

It is required to draw from C a straight line at right angles to AB.

Construction. In AC take any point D, and from CB cut off CE equal to CD. I. 3 . On DE describe the equilateral triangle DFE. I. 1. Join CF.
Then shall CF be at right angles to AB.
Proof. For in the triangles DCF, ECF,
Because $\left\{\begin{array}{c}\text { DC is equal to EC, } \\ \text { and CF is common to both; } \\ \text { and the third side DF is equal to the third side } \\ \mathrm{EF} \text { : } \\ \text { Def. } 24 .\end{array}\right.$
Therefore the angle DCF is equal to the angle ECF: I. 8. and these are adjacent angles.
But when one straight line, standing on another, makes the adjacent angles equal, each of these angles is called a right angle ;

Def. 10.
therefore each of the angles DCF, ECF is a right angle.
Therefore CF is at right angles to AB, and has been drawn from a point C in it. Q.E.F.

EXERCISE.

In the figure of the above proposition, shew that any point in $F C$, or FC produced, is equidistant from D and E.

Proposition 12. Problem.

To draw a struight line perpendicular to a given straight line of unlimited length, from a given point without it.

Let $A B$ be the given straight line of unlimited length, and let C be the given point without it.

It is required to draw from C a straight line perpendicular to AB.

Construction. On the side of $A B$ remote from C take any point D;
and with centre C, and radius $C D$, describe the circle FDG, cutting $A B$ at F and G

Bisect FG at H ;

1. 10. and join CH .
Then shall CH be perpendicular to AB .
Join CF and CG.
Proof. Then in the triangles FHC, GHC,
FH is equal to GH,
Constr: and HC is common to both;
Because $\left\{\begin{array}{l}\text { and } \\ \text { and the third side } C F \text { is equal to the third side }\end{array}\right.$ CG, being radii of the circle FDG; Def. 15. therefore the angle CHF is equal to the angle CHG ; I. 8. and these are adjacent angles.
But when one straight line, standing on another, makes the adjacent angles equal, each of these angles is called a right angle, and the straight line which stands on the other is called a perpendicular to it.

Therefore CH is perpendicular to AB ,
and has been drawn from the point C without it. Q.E.F.
Note. The line $A B$ must be of unlimited length, that is, capable of production to an indefinite length in either direction, to ensure its being intersected in two points by the circle FDG.

QUESTIONS AND EXERCISES FOR REVISION.

1. Distinguish between a problem and a theorem.
2. When are two figures said to be identically equal? Under what conditions has it so far been proved that two triangles are identically equal?
3. Explain the method of proof known as Reductio ad Absurdum. Quote the enunciations of the propositions in which this method has so far been used.
4. Quote the corollaries of Propositions 5 and 6, and shew that each is the converse of the other.
5. What is meant by saying that Euclid's reasoning is deductive? Shew, for instance, that the proof of Proposition 5 is a deductive argument.
6. Two forts defend the mouth of a river, one on each side ; the forts are 4000 yards apart, and their guns have a range of 3000 yards. Taking one inch to represent a length of 1000 yards, draw a diagram shewing what part of the river is exposed to the fire of both forts.
7. Define the perimeter of a rectilineal figure. A square and an equilateral triangle each have a perimeter of 3 feet: compare the lengths of their sides.
8. Shew how to draw a rhombus each of whose sides is equal to a given straight line $P Q$, which is also to be one diagonal of the figure.
9. A and B are two given points. Shew how to draw a rhombus having A and B as opposite vertices, and having each side equal to a given line PQ. Is this always possible?
10. Two circles are described with the same centre O; and two radii $O A, O B$ are drawn to the inner circle, and produced to cut the outer circle at D and E : prove that

$$
\begin{equation*}
\mathrm{DB}=\mathrm{EA} ; \tag{i}
\end{equation*}
$$

(ii) the angle $B A D=$ the angle $A B E$;
(iii) the angle $O D B=$ the angle $O E A$.

EXERCISES ON PROPOSITIONS 1 TO 12.

1. Shew that the straight line which joins the vertex of an isosceles triangle to the middle point of the base is perpendicular to the base.
2. Shew that the straight lines which join the extremities of the base of an isosceles triangle to the middle points of the opposite sides, are equal to one another.
3. Two given points in the base of an isosceles triangle are equidistant from the extremities of the base : shew that they are also equidistant from the vertex.
4. If the opposite sides of a quadrilateral are equal, shew that the opposite angles are also equal.
5. Any two isosceles triangles $X A B, Y A B$ stand on the same base $A B$: shew that the angle $X A Y$ is equal to the angle $X B Y$; and if $X Y$ be joined, that the angle $A X Y$ is equal to the angle $B X Y$.
6. Shew that the opposite angles of a rhombus are bisected by the diagonal which joins them.
7. Shew that the straight lines which bisect the base angles of an isosceles triangle form with the base a triangle which is also isosceles.
8. $A B C$ is an isosceles triangle having $A B$ equal to $A C$; and the angles at B and C are bisected by straight lines which meet at O : shew that $O A$ bisccts the angle BAC.
9. Shew that the triangle formed by joining the middle points of the sides of an equilateral triangle is also equilateral.
10. The equal sides $B A, C A$ of an isosceles triangle $B A C$ are produced beyond the vertex A to the points E and F, so that $A E$ is equal to $A F$; and $F B, E C$ are joined: shew that $F B$ is equal to $E C$.
11. Shew that the diagonals of a rhombus bisect one another at right angles.
12. In the equal sides $A B, A C$ of an isosceles triangle $A B C$ two points X and Y are taken, so that $A X$ is equal to $A Y$; and $C X$ and BY are drawn intersecting in O : shew that
(i) the triangle BOC is isosceles;
(ii) AO bisects the vertical angle BAC ;
(iii) AO , if produced, bisects BC at right angles.
13. Describe an isosceles triangle, having given the base and the length of the perpendicular drawn from the vertex to the base.
14. In a given straight line find a point that is equidistant from two given points. In what case is this impossible?

Proposition 13. Theorem.

The adjacent angles which one straight line makes with another straight line, on one side of it, are either two right angles or are together equal to two right angles.

Let the straight line $A B$ meet the straight line $D C$.
Then the adjacent angles DBA, ABC shall be either two right angles, or together equal to two right angles.

Case I. For if the angle DBA is equal to the angle $A B C$, each of them is a right angle. Def. 10.

Case II. But if the angle DBA is not equal to the angle $A B C$, from B draw $B E$ at right angles to $C D$.
I. 11.

Proof. Now the angle DBA is made up of the two angles DBE, EBA; to each of these equals add the angle $A B C$; then the two angles $D B A, A B C$ are together equal to the three angles DBE, EBA, ABC.
Again, the angle EBC is made up of the two angles EBA, ABC ;
to each of these equals add the angle DBE ;
then the two angles DBE, EBC are together equal to the three angles DBE, EBA, ABC. $A x .2$.
But the two angles $D B A, A B C$ have been shewn to be equal to the same three angles ;
therefore the angles DBA, $A B C$ are together equal to the angles DBE, EBC.
$A x .1$.
But the angles DBE, EBC are two right angles; Constr. therefore the angles $D B A, A B C$ are together equal to two right angles.

DEFINITIONS.

(i) The complement of an acute angle is its defect from a right angle, that is, the angle by which it falls short of a right angle.

Thus two angles are complementary, when their sum is a right angle.
(ii) The supplement of an angle is its defect from two right angles, that is, the angle by which it falls short of two right angles.

Thus two angles are supplementary, when their sum is two right angles.

Corollary. Angles which are complementary or supplementary to the same angle are equal to one another.

EXERCISES.

1. If the two exterior angles formed by producing a side of a triangle both ways are equal, shew that the triangle is isosceles.
2. The bisectors of the adjacent angles which one straight line makes with another contain a right angle.

Note In the adjoining diagram $A O B$ is a given angle; and one of its arms AO is produced to C : the adjacent angles $A O B, B O C$ are bisected by OX, OY.

Then OX and OY are called respectively the internal and external bisectors of the angle AOB.

Hence Exercise 2 may be thus
 enunciated:

The internal and external bisectors of an angle are at right angles to one another.
3. Shew that the angles AOX and COY are complementary.
4. Shew that the angles BOX and COX are supplementary ; and also that the angles AOY and BOY are supplementary.

Proposition 14. Theorem.

If, at a point in a straight line, two other straight lines, on opposite sides of it, make the adjacent angles together equal to two right angles, then these two straight lines shall be in one and the same straight line.

At the point B in the straight line $A B$, let the two straight lines $B C, B D$, on the opposite sides of $A B$, make the adjacent angles $A B C, A B D$ together equal to two right angles.

Then BD shall be in the same straight line with BC .
Proof. For if BD be not in the same straight line with BC, if possible, let $B E$ be in the same straight line with $B C$.

Then because $A B$ meets the straight line CBE,
therefore the adjacent angles CBA, $A B E$ are together equal to two right angles.
I. 13 .

But the angles CBA, ABD are also together equal to two right angles.

Hyp.
Therefore the angles CBA, $A B E$ are together equal to the angles CBA, ABD. $A x .11$. From each of these equals take the common angle CBA; then the remaining angle $A B E$ is equal to the remaining angle ABD ; the part equal to the whole ; which is impossible.
Therefore $B E$ is not in the same straight line with BC.
And in the same way it may be shewn that no other line but $B D$ can be in the same straight line with $B C$.

Therefore BD is in the same straight line with BC. Q.E.D.

EXERCISE.

$A B C D$ is a rhombus; and the diagonal $A C$ is bisected at O. If O is joined to the angular points B and D; shew that $O B$ and $O D$ are in one straight line.

Proposition 15. Theorem.

If two straight lines intersect one another, then the vertically opposite angles shall be equal.

Let the two straight lines $A B, C D$ cut one another at the point E .

Then (i) the angle AEC shall be equal to the angle DEB;
(ii) the angle CEB shall be equal to the angle AED .

Proof. Because AE meets the straight line CD, therefore the adjacent angles CEA, AED are together equal to two right angles.

Again, because DE meets the straight line AB, therefore the adjacent angles $A E D, D E B$ are together equal
to two right angles. I. 13.
Therefore the angles CEA, AED are together equal to the angles AED, DEB.
From each of these equals take the common angle AED; then the remaining angle CEA is equal to the remaining angle DEB.
$A x .3$.
In the same way it may be proved that the angle CEB is equal to the angle AED.
Q.E.D.

Corollary 1. From this it follows that, if two straight lines cut one another, the four angles so formed are together equal to four right angles.

Corollary 2. Consequently, when any number of straight lines meet at a point, the sum of the angles made by consecutive lines is equal to four right angles.

Proposition 16. Theorem.

If one side of a triangle be produced, then the exterior angle shall be greater than either of the interior opposite angles.

Let $A B C$ be a triangle, and let $B C$ be produced to D.
Then shall the exterior angle ACD be greater than either of the interior opposite angles $\mathrm{ABC}, \mathrm{BAC}$.

Construction. Bisect AC at E;
I. 10.

Join $B E$; and produce it to F, making $E F$ equal to $B E$. I. 3. Join FC.
Proof. Then in the triangles AEB, CEF,
Because $\left\{\begin{array}{c}\text { AE is equal to CE, } \\ \text { and EB is equal to EF; }\end{array} \begin{array}{r}\text { Constr. } \\ \text { Constr: } \\ \text { also the angle AEB is } \\ \text { opposite angle CEF; }\end{array}\right.$ equal to the vertically \quad I. $\begin{array}{rl}\text { I. } 15 .\end{array}$ therefore the triangle $A E B$ is equal to the triangle CEF in all respects :
I. 4.
so that the angle BAE is equal to the angle ECF.
But the angle ECD is greater than its part, the angle ECF ; therefore the angle ECD is greater than the angle BAE;
that is, the angle $A C D$ is greater than the angle BAC.
In the same way, if $B C$ be bisected, and the side $A C$ produced to G, it may be proved that the angle BCG is greater than the angle ABC.

But the angle $B C G$ is equal to the angle $A C D: 1.15$ therefore also the angle $A C D$ is greater than the angle $A B C$.

Proposition 17. Theorem.

Any two angles of a triangle are together less than two right angles.

Let $A B C$ be a triangle.
Then shall any two of the angles of the triangle $A B C$ be together less than two right angles.
Construction. Produce the side $\dot{B C}$ to D.
Proof. Then because BC, a side of the triangle $A B C$, is produced to D;
therefore the exterior angle ACD is greater than the interior opposite angle ABC.
I. 16 .

To each of these add the angle ACB:
then the angles $A C D, A C B$ are together greater than the angles ABC, ACB. $A x .4$.
But the adjacent angles $A C D, A C B$ are together equal to two right angles.
I. 13.

Therefore the angles ABC, ACB are together less than two right angles.
Similarly it may be shewn that the angles $B A C, A C B$, as also the angles $C A B, A B C$, are together less than two right angles.

Note. It follows from this Proposition that every triangle must have at least two acute angles: for if one angle is obtuse, or a right angle; each of the other angles must be less than a right angle.

EXERCISES.

1. Enunciate this Proposition so as to shew that it is the converse of Axiom 12.
2. If any side of a triangle is produced both ways, the exterior angles so formed are together greater than two right angles.
3. Shew how a proof of Proposition 17 may be obtained by joining each vertex in turn to any point in the opposite side.

Proposition 18. Theorem.

If one side of a triangle be greater than another, then the angle opposite to the greater side shall be greater than the angle opposite to the less.

Let $A B C$ be a triangle, in which the side $A C$ is greater than the side $A B$.

Then shall the angle ABC be greater than the angle ACB .
Construction. From AC cut off a part AD equal to AB. I. 3. Join BD.

Proof. Then in the triangle ABD, because $A B$ is equal to $A D$,
therefore the angle $A B D$ is equal to the angle $A D B$. I. 5.
But the exterior angle ADB of the triangle DCB is greater than the interior opposite angle DCB, that is, greater than the angle ACB.
Therefore also the angle ABD is greater thar the angle ACB; still more then is the angle $A B C$ greater than the angle ACB.
Q.E.D.

Euclid enunciated Proposition 18 as follows:
The greater side of every triangle has the greater angle opposite to it.
[This form of enunciation is found to be a common source of difficulty with beginners, who fail to distinguish what is assumed in it and what is to be proved. If Euclid's enunciations of Props. 18 and 19 are adopted, it is important to remember that in each case the part of the triangle first named points out the hypothesis.]

If one angle of a triangle be greater than another, then the side opposite to the greater angle shall be greater than the side opposite to the less.

Let $A B C$ be a triangle in which the angle $A B C$ is greater than the angle ACB.

Then shall the side AC be greater than the side AB .
Proof. For if AC be not greater than AB, it must be either equal to, or less than $A B$.

But $A C$ is not equal to $A B$,
for then the angle $A B C$ would be equal to the angle $A C B$; I. $\boldsymbol{5}$. but it is not.

Нур.
Neither is $A C$ less than $A B$;
for then the angle $A B C$ would be less than the angle $A C B ;$ I. 18. but it is not.

Нур.
That is, $A C$ is neither equal to, nor less than $A B$. Therefore $A C$ is greater than AB. Q.E.D.

Note. The mode of demonstration used in this Proposition is known as the Proof by Exhaustion. It is applicable to cases in which one of certain suppositions must necessarily be true ; and it consists in shewing that each of these suppositions is false with one exception: hence the truth of the remaining supposition is inferred.

Euclid enunciated Proposition 19 as follows:
The greater angle of every triangle is subtended by the greater side, or, has the greater side opposite to it.
[For Exercises on Props. 18 and 19 see page 44.]
E.C.

Proposition 20. Theorem.

Any two sides of a triangle are together greater than the third side.

Let $A B C$ be a triangle.
Then shall any two of its sides be together greater than the third side :
namely, BA, AC, shall be greater than CB ;
AC, CB shall be greater than BA ;
and CB, BA shall be greater than AC .
Construction. Produce BA to D, making AD equal to AC. I. 3. Join DC.

Proof. Then in the triangle ADC, because $A D$ is equal to $A C$,

Constr.
therefore the angle $A C D$ is equal to the angle $A D C$. I. 5. But the angle $B C D$ is greater than its part the angle $A C D$; therefore also the angle $B C D$ is greater than the angle $A D C$, that is, than the angle BDC.
And in the triangle BCD,
because the angle $B C D$ is greater than the angle $B D C$, therefore the side $B D$ is greater than the side $C B$.
I. 19.

But $B A$ and $A C$ are together equal to $B D$;
therefore $B A$ and $A C$ are together greater than $C B$.
Similarly it may be shewn
that $A C, C B$ are together greater than $B A$;
and $C B, B A$ are together greater than $A C$. Q.E.D.

Proposition 21. Theorem.

If from the ends of a side of a triangle, there be drawn two straight lines to a point within the triangle, then these straight lines shall be less than the other two sides of the triangle, but shall contain a greater angle.

Let $A B C$ be a triangle, and from B, C, the ends of the side $B C$, let the straight lines $B D, C D$ be drawn to a point D within the triangle
Then (i) BD and DC shall be together less than BA and AC ;
(ii) the angle BDC shall be greater than the angle BAC .

Construction. Produce BD to meet AC in E.
Proof. (i) In the triangle BAE, the two sides BA, AE are together greater than the third side BE ;
I. 20. to each of these add EC ;
then BA, AC are together greater than $\mathrm{BE}, \mathrm{EC} . A x .4$. Again, in the triangle DEC, the two sides DE, EC are together greater than DC ;
I. 20 . to each of these add BD ;
then $B E, E C$ are together greater than $B D, D C$.
But it has been shewn that BA, AC are together greater than BE, EC:
still more then are $B A, A C$ greater than $B D, D C$.
(ii) Again, the exterior angle BDC of the triangle DEC is greater than the interior opposite angle DEC ;
I. 16.
and the exterior angle DEC of the triangle BAE is greater than the interior opposite angle BAE, that is, than the angle BAC ;
I. 16.
still more then is the angle BDC greater than the angle BAC.
Q.E.D.

EXERCISES.

on Propositions 18 and 19.

1. The hypotenuse is the greatest side of a right-angled triangle.
2. If two angles of a triangle are equal to one another, the sides also, which subtend the equal angles, are equal to one another. Prove this [i.e. Prop. 6] indirectly by using the result of Prop. 18.
3. $B C$, the base of an isosceles triangle $A B C$, is produced to any point D; shew that $A D$ is greater than either of the equal sides.
4. If in a quadrilateral the greatest and least sides are opposite to one another, then each of the angles adjacent to the least side is greater than its opposite angle.
5. In a triangle $A B C$, if $A C$ is not greater than $A B$, shew that any straight line drawn throngh the vertex A and terminated by the base $B C$, is less than $A B$.
6. $A B C$ is a triangle, in which $O B, O C$ bisect the angles $A B C$, $A C B$ respectively : shew that, if $A B$ is greater than $A C$, then $O B$ is greater than OC.

on Proposition 20.

7. The difference of any two sides of a triangle is less than the third side.
8. In a quadrilateral, if two opposite sides which are not parallel are produced to meet one another ; shew that the perimeter of the greater of the two triangles so formed is greater than the perimeter of the quadrilateral.
9. The sum of the distances oî any point from the three angular points of a triangle is greater than half its perimeter.
10. The perimeter of a quadrilateral is greater than the sum of its diagonals.
11. Obtain a proof of Proposition 20 by bisecting an angle by a straight line which meets the opposite side.

on Proposition 21.

12. In Proposition 21 shew that the angle BDC is greater than the angle BAC by joining AD, and producing it towards the base.
13. The sum of the distances of any point within a triangle from its angular points is less than the perimeter of the triangle.

QUESTIONS FOR REVISION.

1. Define the complement of an angle. When are two angles said to be supplementary? Shew that two angles which are supplementary to the same angle are equal to one another.
2. What is meant by an angle being bisected internally and externally?

Prove that the internal and external bisectors of an angle are at right angles to one another.
3. Prove that the sum of the angles formed by any number of straight lines drawn from a point is equal to four right angles.
4. Why must every triangle have at least two acute angles? Quote-the enunciation of the proposition from which this inference is drawn.
5. In the enunciation The greater side of a triangle has the greater angle opposite to it, point out what is assumed and what is to be proved.
6. What is meant by the Proof by Exhaustion? Illustrate the use of this method by naming the steps in the proof of Proposition 19.
7. What inference may be drawn respecting the triangles whose sides measure
(i) 4 inches, 5 inches, 4 inches ;
(ii) 8 inches, 9 inches, 10 inches;
(iii) 6 inches, 10 inches, 4 inches?
8. Quote the enunciations of propositions which, from a hypothesis relating to the sides of triangle, establish a conclusion relating to the angles.
9. Quote the enunciations of propositions which, from a hypothesis relating to the angles of a triangle, establish a conclusion relating to the sides.
10. Explain why parallel straight lines must be in the same plane.
11. Prove by means of Prop. 7 that on a given base and on the same side of it only one equilateral triangle can be drawn.
12. In an isosceles triangle, if the equal sides are produced, shew that the angles on the other side of the base must be obtuse.

Proposition 22. Problem.

To describe a triangle having its sides equal to three given straight lines, any two of which are together greater than the third.

Let A, B, C be the three given straight lines, of which any two are together greater than the third.

It is required to describe a triangle of which the sides shall be equal to $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
Construction. Take a straight line DE terminated at the point D, but unlimited towards E.
Make DF equal to A, FG equal to B , and GH equal to C . I. 3 . With centre F and radius FD, describe the circle DLK. With centre G and radius GH, describe the circle MHK cutting the former circle at K .

Join FK, GK.
Then shall the triangle KFG have its sides equal to the three straight lines A, B, C.

Proof. Because F is the centre of the circle DLK, therefore FK is equal to FD: Def. 15. but FD is equal to A ; Constr. therefore also FK is equal to A . $A x$. 1 .
Again, because G is the centre of the circle MHK, therefore GK is equal to GH: Def. 15. but GH is equal to C ; therefore also GK is equal to $\mathrm{C} \quad A x .1$. And FG is equal to B . Constr.
Therefore the triangle KFG has its sides KF, FG, GK equal respectively to the three given lines A, B, C. Q.E.F.

Proposition 23. Problem.

At a given point in a given straight line, to make an angle equal to a given rectilineal angle.

Let $A B$ be the given straight line, and A the given point in it, and let LCM be the given angle.

It is required to draw from A a straight line making with AB an angle equal to the given angle DCE.

Construction. In CL, CM take any points D and E; and join DE.
From $A B$ cut off $A F$ equal to $C D$.
I. 3 .

On AF describe the triangle FAG, having the remaining sides $A G, G F$ equal respectively to $C E, E D$.
I. 22 .

Then shall the angle FAG be equal to the angle DCE.
Proof. For in the triangles FAG, DCE, $F A$ is equal to $D C$, Constr. Constr. and the base FG is equal to the base DE: Constr. therefore the angle FAG is equal to the angle DCE. I. 8.
That is, AG makes with $A B$, at the given point A. an angle equal to the given angle DCE. Q.E.F.

EXERCISE.

On a given base describe a triangle, whose remaining sides shall be equal to two given straight lines. Point out how the construction fails, if any one of the three given lines is greater than the sum of the other two.

Proposition 24. Theorem.

If two triangles have two sides of the one equal to two sides of the other, each to each, but the angle contained by the two sides of one greater than the angle contained by the corresponding sides of the other; then the base of that which has the greater angle shall be greater than the base of the other.

Let ABC, DEF be two triangles, in which the side $B A$ is equal to the side $E D$, and the side $A C$ is equal to the side $D F$, but the angle BAC is greater than the angle EDF.
Then shall the base BC be greater than the base EF .
Of the two sides $D E$, $D F$, let $D E$ be that which is not greater than the other.*

Construction. At D in the straight line ED, and on the same side of it as DF, make the angle EDG equal to the angle BAC.
I. 23 .

> Make DG equal to DF or AC ; and join EG, GF.

Proof. Then in the triangles BAC, EDG,
Because $\left\{\begin{array}{rr}\text { BA is equal to ED, } & \begin{array}{r}\text { Hyp. } \\ \text { and } A C \text { is equal to } D G,\end{array} \\ \text { Constr. } \\ \text { also the contained angle } B A C & \text { is equal to the } \\ \text { contained angle EDG; }\end{array}\right.$
therefore the triangle BAC is equal to the triangle EDG in all respects :
I. 4.
so that the base $B C$ is equal to the base EG.

Again, in the triangle FDG, because $D G$ is equal to $D F$, therefore the angle DFG is equal to the angle DGF. I. 5. But the angle DGF is greater than its part the angle EGF ; therefore also the angle DFG is greater than the angle EGF ; still more then is the angle EFG greater than the angle EGF.

And in the triangle EFG,
because the angle EFG is greater than the angle EGF, therefore the side EG is greater than the side EF; I. 19.
but EG was shewn to be equal to BC ;
therefore $B C$ is greater than $E F$ Q.E.D.

* The object of this step is to make the point F fall below EG. Otherwise F might fall above, upon, or below EG; and each case would require separate treatment. But as it is not proved that this condition fulfils its object, this demonstration of Prop. 24 must be considered defective.

An alternative construction and proof are given below.

Construction. At D in ED make the angle EDG equal to the angle BAC ; and make DG equal to DF. Join EG.

Then, as before, it may be shewn that the triangle $E D G=$ the triangle $B A C$ in all respects.

Now if EG passes through F, then EG is greater than EF ; that is, BC is greater than EF.

But if not, bisect the angle FDG by DK, meeting EG at K. Join FK.

Proof. Then in the triangles FDK, GDK,

Because $\left\{\begin{array}{c}\text { FD }=\text { GD, } \\ \text { and } D K \text { is common to both, } \\ \text { and the angle } F D K=\text { the angle } G\end{array}\right.$ and the angle FDK = the angle GDK ; Constr.

$$
\therefore \quad F K=G K \text {. }
$$

I. 4.

But in the triangle EKF, the two sides EK, KF are greater than EF ; that is, $E K, K$ are greater than $E F$.
Hence EG (or $B C$) is greater than EF.

Proposition 25. Theorem.

If two triangles have two sides of the one equal to two sides of the other, each to each, but the base of one greater than the base of the other; then the angle contained by the sides of that which has the greater base, shall be greater than the angle contained by the corresponding sides of the other.

Let $A B C, D E F$ be two triangles in which the side $B A$ is equal to the side $E D$, and the side $A C$ is equal to the side $D F$, but the base $B C$ is greater than the base $E F$.
Then shall the angle BAC be greater than the angle EDF.
Proof. For if the angle BAC be not greater than the angle EDF, it must be either equal to, or less than the angle EDF.

But the angle BAC is not equal to the angle EDF, for then the base $B C$ would be equal to the base EF; I. 4. but it is not.

Hyp.
Neither is the angle BAC less than the angle EDF, for then the base BC would be less than the base EF ; I. 24. but it is not.
Therefore the angle BAC is neither equal to, nor less than the angle EDF ; that is, the angle BAC is greater than the angle EDF. Q.E.D.

EXERCISE.

In a triangle $A B C$, the vertex A is joined to X, the middle point of the base $B C$; shew that the angle AXB is obtuse or acute, according as $A B$ is greater or less than $A C$.

Proposition 26. Theorem.

If two triangles have two angles of the one equal to two angles of the other, each to each, and a side of one equal to a side of the other, these sides being either adjacent to the equal angles, or opposite to equal angles in each; then shall the triangles be equal in all respects.

Case I. When the equal sides are adjacent to the equal angles in the two triangles.

Let ABC, DEF be two triangles, in which the angle $A B C$ is equal to the angle $D E F$, and the angle $A C B$ is equal to the angle DFE, and the side $B C$ is equal to the side $E F$.
Then shall the triangle ABC be equal to the triangle DEF in all respects; that is, AB shall be equal to DE , and AC to DF , and the angle BAC shall be equal to the angle EDF.
For if $A B$ be not equal to $D E$, one must be greater than the other. If possible, let $A B$ be greater than $D E$.
Construction. From BA cut off BG equal to ED,
I. 3. and join GC.
Proof. Then in the two triangles GBC, DEF,
Because $\left\{\begin{array}{rr}\text { GB is equal to } \mathrm{DE}, & \text { Constr. } \\ \text { and } \mathrm{BC} \text { is equal to } \mathrm{EF}, & \text { Hyp. } \\ \text { also the contained angle } \mathrm{GBC} \\ \text { contained angle DEF ; } & \text { is equal to the }\end{array}\right.$ therefore the triangle GBC is equal to the triangle DEF in all respects ;
I. 4.
so that the angle GCB is equal to the angle DFE.
But the angle ACB is equal to the angle DFE; Hyp. therefore also the angle GCB is equal to the angle ACB; $A x .1$.
the part equal to the whole, which is impossible.

Therefore $A B$ is not unequal to $D E$; that is, $A B$ is equal to $D E$.
Hence in the triangles ABC, DEF,
Because $\left\{\begin{array}{cc}A B \text { is equal to } \mathrm{DE}, & \text { Proved. } \\ \text { and } \mathrm{BC} \text { is equal to } \mathrm{EF} ; & \text { Hyp. } \\ \text { also the contained angle } \mathrm{ABC} \text { is } & \text { equal } \\ \text { contained angle } \mathrm{DEF} ;\end{array}\right.$ therefore the triangle $A B C$ is equal to the triangle DEF in all respects :
I. 4.
so that the side $A C$ is equal to the side $D F$; and the angle BAC is equal to the angle EDF.
Q.E.D.

Case II. When the equal sides are opposite to equal angles in the two triangles.

Let ABC, DEF be two triangles, in which the angle $A B C$ is equal to the angle $D E F$, and the angle $A C B$ is equal to the angle DFE, and the side $A B$ is equal to the side $D E$.
Then the triangle ABC shall be equal to the triangle DEF in all respects;

> namely, BC shall be equal to EF , and AC shall be equal to DF , and the angle BAC shall be equal to the angle EDF.

For if BC be not equal to EF , one must be greater than the other. If possible, let BC be greater than EF .

Construction. From BC cut off BH equal to EF, I. 3. and join AH.

Proof. Then in the triangles ABH, DEF,
Because $\left\{\begin{array}{cc}\text { AB is equal to } D E, & \text { Hyp. } \\ \text { and } B H \text { is equal to } E F, & \text { Constr. } \\ \text { also the contained angle } A B H \\ \text { contained angle } D E F ;\end{array}\right.$ is equal to the \quad Hyp. therefore the triangle $A B H$ is equal to the triangle DEF in all respects;
I. 4.
so that the angle AHB is equal to the angle DFE.
But the angle DFE is equal to the angle ACB ; Hyp. therefore the angle AHB is equal to the angle $\mathrm{ACB} ; A x .1$. that is, an exterior angle of the triangle $A C H$ is equal to an interior opposite angle ; which is impossible.
I. 16.

> Therefore BC is not unequal to EF, that is, $B C$ is equal to $E F$.

Hence in the triangles ABC, DEF,
Because $\left\{\begin{array}{c}\text { AB is equal to } \mathrm{DE}, \\ \text { and } \mathrm{BC} \text { is equal to } \mathrm{EF} ;\end{array}\right.$ Hyp. $\begin{array}{r}\text { Proved. } \\ \text { also the contained angle } \mathrm{ABC} \\ \text { contained angle } \mathrm{DEF} ;\end{array}$ is equal to the therefore the triangle $A B C$ is equal to the triangle $D E F$ in all respects ;
so that the side $A C$ is equal to the side $D F$, and the angle BAC is equal to the angle EDF.
Q.E.D.

Corollary. In both cases of this Proposition it is seen that the triangles may be made to coincide with one another ; and they are therefore equal in area.

ON THE IDENTICAL EQUALITY OF TRIANGLES.

Three cases have been already dealt with in Propositions 4, 8, and 26 , the results of which may be summarized as follows :

Two triangles are equal in all respects when the following three parts in each are severally equal :

1. Two sides, and the included angle.

Prop. 4.
2. The three sides.

Prop. 8, Cor.
3. (a) Two angles, and the adjacent side ;
(b) Two angles, and a side opposite one of them. $\}$ Prop. 26.

Two triangles are not, however, necessarily equal in all respects when any three parts of one are equal to the corresponding parts of the other. For example
(i) When the three angles of one are equal to the three angles of the other, each to each, the adjoining diagram shews that the triangles need not be equal in all respects.

(ii) When two sides and one angle in one are equal to two sides and one angle in the other, the given angles being opposite to equal sides, the diagram shews that the triangles need not be equal in all respects.

For it will be seen that if $A B=D E$, and $A C=D F$, and the angle $A B C=$ the angle $D E F$, then the shorter of the given sides in the triangle DEF may lie in either of the positions DF or DF'.

In cases (i) and (ii) a further condition must be given before we can prove that the two triangles are identically equal.
[See Theorem B, p. 96.]
We observe that in each of the three cases in which two triangles have been proved equal in all respects, namely in Propositions 4, 8, 26, it is shewn that the triangles may be made to coincide with one another; so that they are equal in area. Euclid however restricted himself to the use of Prop. 4, when he required to deduce the equality in area of two triangles from the equality of certain of their parts. This restriction is now generally abandoned.

EXERCISES ON PROPOSITIONS 12-26.

1. If $B X$ and $C Y$, the bisectors of the angles at the base $B C$ of an isosceles triangle $A B C$, meet the opposite sides in X and Y, shew that the triangles $Y B C, X C B$ are equal in all respects.
2. Shew that the perpendiculars drawn from the extremities of the base of an isosceles triangle to the opposite sides are equal.
3. Any point on the bisector of an angle is equidistant from the arms of the angle.
4. Through O, the middle point of a straight line $A B$, any straight line is drawn, and perpendiculars $A X$ and $B Y$ are dropped upon it from A and B : shew that $A X$ is equal to $B Y$.
5. If the bisector of the vertical angle of a triangle is at right angles to the base, the triangle is isosceles.
6. The perpendicular is the shortest straight line that can be drawn from a given point to a given straight line; and of others, that which is nearer to the perpendicular is less than the more remote; and two, and only two equal straight lines can be drawn from the given point to the given straight line, one on each side of the perpendicular.
7. From two given points on the same side of a given straight line, draw two straight lines, which shall meet in the given straight line, and make equal angles with it.

Let $A B$ be the given straight line, and P, Q the given points.

It is required to draw from P and Q to a point in $A B$, two straight lines that shall be equally inclined to $A B$.

Construction. From P draw PH perpendicular to $A B$: produce PH to , making $H P^{\prime}$ equal to $P H$. Draw $Q P^{\prime}$, meeting $A B$ in K. Join PK.

Then PK, QK shall be the required lines. [Supply the proof.]
8. In a given straight line find a point which is equidistant from two given intersecting straight lines. In what case is this impossible?
9. Through a given point draw a straight line such that the perpendiculars drawn to it from two given points may be equal.

In what case is this impossible?

SECTION II.

PARALLEL STRAIGHT LINES AND PARALLELOGRAMS.

Definition. Parallel straight lines are such as, being in the same plane, do not meet however far they are produced in both directions.

When two straight lines $A B, C D$ are met by a third straight line EF, eight angles are formed, to which for the sake of distinction particular names are given.

Thus in the adjoining figure, $1,2,7,8$ are called exterior angles, 3, 4, 5, 6 are called interior angles, 4 and 6 are said to be alternate angles ; so also the angles 3 and 5 are alternate to one another.

Of the angles 2 and 6, 2 is referred to as
 the exterior angle, and 6 . as the interior opposite angle on the same side of EF.

2 and 6 are sometimes called corresponding angles.
So also, 1 and 5, 7 and 3, 8 and 4 are corresponding angles.
Euclid's treatment of parallel straight lines is based upon his twelfth Axiom, which we here repeat.

Axiom 12. If a straight line cut two straight lines so as to make the two interior angles on the same side of it together less than two right angles, these straight lines, being continually produced, will at length meet on that side on which are the angles which are together less than two right angles.

Thus in the figure given above, if the two angles 3 and 6 are together less than two right angles, it is asserted that $A B$ and $C D$ will meet towards B and D.

This Axiom is used to establish 1. 29 : some remarks upon it will be found in a note on that Proposition,

Proposition 27. Theorem.
If a straight line, falling on two other straight lines, make the alternate angles equal to one another, then these two straight lines shall be parallel.

Let the straight line $E F$ cut the two straight lines $A B$, $C D$ at G and H, so as to make the alternate angles AGH, GHD equal to one another.

Then shall AB and CD be parallel.
Proof. For if AB and CD be not parallel,
they will meet, if produced, either towards B and D, or towards A and C.
If possible, let $A B$ and $C D$, when produced, meet towards B and D , at the point K .
Then KGH is a triangle, of which one side KG is produced to A ;
therefore the exterior angle AGH is greater than the interior opposite angle GHK.
I. 16.

But the angle AGH was given equal to the angle GHK : Hyp. hence the angles AGH and GHK are both equal and unequal ; which is impossible.
Therefore $A B$ and $C D$ cannot meet when produced towards B and D.
Similarly it may be shewn that they cannot meet towards A and C :
therefore $A B$ and $C D$ are parallel. Q.E.D.
E.C.

Proposition 28. Theorem.

If a straight line, falling on two other straight lines, make an exterior angle equal to the interior opposite angle on the same side of the line; or if it make the interior angles on the same side together equal to two right angles, then the two straight lines shall be parallel.

Let the straight line $E F$ cut the two straight lines $A B$, $C D$ in G and H : and

First, let the exterior angle EGB be equal to the interior opposite angle GHD.

Then shall AB and CD be parallel.
Proof. Because the angle EGB is equal to the angle GHD; and because the angle EGB is also equal to the vertically opposite angle AGH ;
therefore the angle AGH is equal to the angle GHD;
but these are alternate angles;
therefore $A B$ and $C D$ are parallel.
I. 27 .
Q.E.D.

Secondly, let the two interior angles BGH, GHD be together equal to two right angles.

Then shall AB and CD be parallel.
Proof. Because the angles BGH, GHD are together equal to two right angles ;

Hyp. and because the adjacent angles BGH, AGH are also together equal to two right angles;
I. 13.
therefore the angles $B G H, A G H$ are together equal to the two angles BGH, GHD.

From these equals take the common angle BGH :
then the remaining angle $A G H$ is equal to the remaining angle GHD : and these are alternate angles;
therefore $A B$ and $C D$ are parallel.
I. 27.

Proposition 29. Theorem.

If a straight line fall on two parallel struight lines, then it shall make the alternate angles equal to one another, and the exterior angle equal to the interior opposite angle on the same side; and also the two interior angles on the same side equal to two right angles.

Let the straight line EF fall on the parallel straight lines $A B, C D$.
Then (i) the angle AGH shall be equal to the alternate angle GHD ;
(ii) the exterior angle EGB shall be equal to the interior opposite angle GHD ;
(iii) the two interior angles BGH, GHD shall be together equal to two right angles.
Proof. (i) For if the angle AGH be not equal to the angle GHD, one of them must be greater than the other.
If possible, let the angle AGH be greater than the angle GHD ; add to each the angle BGH :
then the angles AGH, BGH are together greater than the angles BGH, GHD.
But the adjacent angles AGH, BGH are together equal to two right angles;
I. 13.
therefore the angles BGH, GHD are together less than two right angles ;
therefore, by Axiom 12, AB and CD meet towards B and D. But they never meet, since they are parallel. Hyp.
Therefore the angle AGH is not unequal to the angle GHD: that is, the angle AGH is equal to the alternate angle GHD.

(ii) Again. because the angle AGH is equal to the vertically opposite angle EGB;
I. 15.
and because the angle AGH is equal to the angle GHD;
Proved.
therefore the exterior angle EGB is equal to the interior opposite angle GHD.
(iii) Lastly, the angle EGB is equal to the angle GHD ; Proved. add to each the angle BGH ;
then the angles $E G B, B G H$ are together equal to the angles BGH, GHD.
But the adjacent angles EGB, BGH are together equal to two right angles :
I. 13.
therefore also the two interior angles BGH, GHD are together equal to two right angles. Q.E.D.

EXERCISES ON PROPOSITIONS 27, 28, 29.

1. Two straight lines $A B, C D$ bisect one another at O : shew that the straight lines joining $A C$ and $B D$ are parallel.
[1. 27.]
2. Straight lines which are perpendicular to the same straight line are parallel to one another.
[I. 27 or I. 28.]
3. If a straight line meet two or more parallel straight lines, and is perpendicular to one of them, it is also perpendicular to all the others.
[I. 29.]
4. If two straight lines are parallel to two other straight lines, each to each, then the angles contained by the first pair are equal respectively to the angles contained by the second pair.
[1. 29.]

Note on the Twelfth Axion.

Euclid's twelfth Axiom is unsatisfactory as the basis of a theory of parallel straight lines. It cannot be regarded as either simple or self-evident, and it therefore falls short of the essential characteristics of an axiom : nor is the difficulty entirely removed by considering it as a corollary to Proposition 17, of which it is the converse.

Of the many substitutes which have been proposed, we need only notice the following :

Axiom. Two intersecting straight lines cannot be both parallel to a third straight line.

This statement is known as Playfair's Axiom ; and though it is not altogether free from objection, it is no doubt simpler and more fundamental than that employed by Euclid, and more readily admitted without proof.

Propositions 27 and 28 having been proved in the usual way, the first part of Proposition 29 is then given thus.

Proposition 29. [Alternative Proof.]

If a straight line fall on two parallel straight lines, then it shall make the alternate angles equal.

Let the straight line EF meet the two parallel straight lines $A B$, CD at G and H .
Then shall the alternate angles AGH, GHD be equal.
For if the angle AGH is not equal to the angle GHD :
at G in the straight line HG make the angle HGP equal to the angle GHD, and alternate to it.
I. 23.

Then PG and CD are parallei.
But AB and CD are parallel : Hyp.

therefore the two intersecting straight lines AG, PG are both parallel . to $C D$:
which is impossible.
Playfair's Axiom.
Therefore the angle AGH is not unequal to the angle GHD ; that is, the alternate angles $A G H, G H D$ are equal. Q.E.D.
The second and third parts of the Proposition may then be deduced as in the text.; and Enclid's Axiom 12 follows as a Corollary.

Proposition 30. Theorem.

Straight lines which are parallel to the same straight line are parallel to one another.

Let the straight lines $A B, C D$ be each parallel to the straight line PQ.

Then shall AB and CD be parallel to one another.
Construction. Draw any straight line EF cutting AB, $C D$, and $P Q$ in the points G, H, and K.

Proof. Then because AB and PQ are parallel, and EF meets them, therefore the angle AGK is equal to the alternate angle GKQ
I. 29.

And because CD and PQ are parallel, and EF meets them, therefore the exterior angle GHD is equal to the interior opposite angle GKQ.
I. 29 .

Therefore the angle AGH is equal to the angle GHD ; and these are alternate angles ; therefore $A B$ and $C D$ are parallel.
I. 27. Q.E.D.

Note. If $P Q$ lies between $A B$ and $C D$, the Proposition may be established in a similar manner, though in this case it scarcely needs proof; for it is inconceivable that two straight lines, which do not meet an intermediate straight line, should meet one another.

The truth of this Proposition may be readily deduced from Playfair's Axiom, of which it is the converse.

For if AB and CD were not parallel, they would meet when produced. Then there would be two intersecting straight lines both parallel to a third straight line: which is impossible.

Therefore AB and CD never meet ; that is, they are parallel.

Proposition 31. Problem.

To draw a straight line through a given point parallel to a given straight line.

Let A be the given point, and $B C$ the given straight line. It is required to draw through A a straight line parallel to BC .

Construction. In BC take any point D; and join AD.
At the point A in DA, make the angle DAE equal to the
angle ADC, and alternate to it,
I. 23.
and produce EA to F.
Then shall EF be parallel to BC.
Proof. Because the straight line AD, meeting the two straight lines EF, BC, makes the alternate angles EAD, ADC equal ;

Constr.
I. 27 . and it has been drawn through the given point A.

> Q.E.F.

EXERCISES.

1. Any straight line drawn parallel to the base of an isosceles triangle.makes equal angles with the sides.
2. If from any point in the bisector of an angle a straight line is drawn parallel to either arm of the angle, the triangle thus formed is isosceles.
3. From a given point draw a straight line that shall make with a given straight line an angle equal to a given angle.
4. From X, a point in the base $B C$ of an isosceles triangle $A B C$, a straight line is drawn at right angles to the base, cutting $A B$ in Y, and $C A$ produced in Z : shew the triangle $A Y Z$ is isosceles.
5. If the straight line which bisects an exterior angle of a triangle is parallel to the opposite side, shew that the triangle is isosceles.

Proposition 32. Theorem.

If a side of a triangle be produced, then the exterior angle shall be equal to the sum of the two interior opposite angles; also the three interior angles of a triangle are together equal to two right angles.

Let $A B C$ be a triangle, and let one of its sides $B C$ be produced to D.
Then (i) the exterior angle ACD shall be equal to the sum of the two interior opposite angles $\mathrm{CAB}, \mathrm{ABC}$;
(ii) the three interior angles $\mathrm{ABC}, \mathrm{BCA}, \mathrm{CAB}$ shall be together equal to two right angles.

Construction. Through C draw CE parallel to BA. I. 31.
Proof. (i) Then because BA and CE are parallel, and AC meets them,
therefore the angle $A C E$ is equal to the alternate angle CAB.
I. 29 .

Again, because BA and CE are parallel, and BD meets them, therefore the exterior angle ECD is equal to the interior opposite angle ABC.
I. 29.

Therefore the whole exterior angle $A C D$ is equal to the sum of the two interior opposite angles $C A B, A B C$.
(ii) Again, since the angle $A C D$ is equal to the sum of the angles $\mathrm{CAB}, \mathrm{ABC}$;

Proved. to each of these equals add the angle BCA :
then the angles $B C A, A C D$ are together equal to the three angles BCA, CAB, ABC.
But the adjacent angles $B C A, A C D$ are together equal to two right angles.
I. 13.

Therefore also the angles $B C A, C A B, A B C$ are together equal to two right angles.
Q.E.D.

From this Proposition we draw the following important inferences.

1. If two triangles have two angles of the one equal to two angles of the other, each to each, then the third angle of the one is equal to the third angle of the other.
2. In any right-angled triangle the two acute angles are complementary.
3. In a right-angled isosceles triangle each of the equal angles is half a right angle.
4. If one angle of a triangle is equal to the sum of the other two, the triangle is right-angled.
5. The sum of the angles of any quadrilateral figure is equal to four right angles.
6. Each angle of an equilateral triangle is two-thirds of a right angle.

EXERCISES ON PROPOSITION 32.

1. Prove that the three angles of a triangle are together equal to two right angles,
(i) by drawing through the vertex a straight line parallel to the base ;
(ii) by joining the vertex to any point in the base.
2. If the base of any triangle is produced both ways, shew that the sum of the two exterior angles diminished by the vertical angle is equal to two right angles.
3. If two straight lines are perpendicular to two other straight lines, each to each, the acute angle between the first pair is equal to the acute angle between the second pair.
4. Every right-angled triangle is divided into two isosceles triangles by a straight line drawn from the right angle to the middle point of the hypotenuse.

Hence the joining line is equal to half the hypotenuse.
5. Draw a straight line at right angles to a given finite straight line from one of its extremities, without producing the given straight line.
[Let $A B$ be the given straight line. On $A B$ describe any isosceles triangle $A C B$. Produce $B C$ to D, making $C D$ equal to $B C$. Join $A D$. Then shall $A D$ be perpendicular to $A B$.]
6. Trisect a right angle.
7. The angle contained by the bisectors of the angles at the base of an isosceles triangle is equal to an exterior angle formed by producing the base.
8. The angle contained by the bisectors of two adjacent angles of a quadrilateral is equal to half the sum of the remaining angles.

The following theorems were added as corollaries to Proposition 32 by Robert Simson, who edited Euclid's text in 1756.

Corollary 1. All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides.

Let ABCDE be any rectilineal figure. Take F, any point within it, and join F to each of the angular points of the figure.
Then the figure is divided into as many triangles as it has sides.
And the three angles of each triangle are together equal to two right angles.
I. 32.

Hence all the angles of all the triangles are together equal to twice as many right angles as the figure has sides.
But all the angles of all the triangles make up all the interior angles of the figure, together with the angles at F, which are equal to four right angles.
I. 15, Cor.

Therefore all the interior angles of the figure, together with four right angles, are equal to twice as many right angles as the figure has sides.
Q.E.D.

Corollary 2. If the sides of a rectilineal figure, which has no re-entrant angle, are produced in order, then all the exterior angles so formed are together equal to four right angles.

For at each angular point of the figure, the interior angle and the exterior angle are together equal to two right angles.
I. 13.

Therefore all the interior angles, with all the exterior angles, are together equal to twice as many right angles as the figure has sides.
But all the interior angles, with four right angles, are together equal to twice as many right angles as the figure has sides.
I. 32, Cor. 1.

Therefore all the interior angles, with all the exterior angles, are together equal to all the interior angles, with four right angles.
Therefore the exterior angles are together equal to four right angles.
Q.E.D.

EXERCISES ON SIMSON'S COROLLARIES.

[A polygon is said to be regular when it has all its sides and all its angles equal.]

1. Express in terms of a right angle the magnitude of each angle of (i) a regular hexagon, (ii) a regular octagon.
2. If one side of a regular hexagon is produced, shew that the exterior angle is equal to the angle of an equilateral triangle.
3. Prove Simson's first Corollary by joining one vertex of the rectilineal figure to each of the other vertices.
4. Find the magnitude of each angle of a regular polygon of n sides.
5. If the alternate sides of any polygon be produced to meet, the sum of the included angles, together with eight right angles, will be equal to twice as many right angles as the figure has sides.

Proposition 33. Theorem.

The straight lines which join the extremities of two equal and parallel straight lines towards the same parts are themselves equal and parallel.

Let $A B$ and $C D$ be equal and parallel straight lines; and let them be joined towards the same parts by the straight lines $A C$ and $B D$.

Then shall AC and BD be equal and parallel.
Construction.
Join BC.
Proof. Then because AB and CD are parallel, and BC meets them,
therefore the angle $A B C$ is equal to the alternate angle DCB.
I. 29 .

Now in the triangles $A B C, D C B$,
Because $\left\{\begin{array}{l}A B \text { is equal to } D C, \\ \text { and } B C \text { is common to both; ; the } \\ \text { also the angle } A B C \text { is equal to the angle } \\ \text { DCB; }\end{array}\right.$ therefore the triangle $A B C$ is equal to the triangle $D C B$ in all respects;
I. 4.
so that the base AC is equal to the base DB , and the angle ACB equal to the angle DBC.

But these are alternate angles.
Therefore AC and BD are parallel :
I. 27. and it has been shewn that they are also equal.
Q.E.D.

Definition. A Parallelogram is a four-sided figure whose opposite sides are parallel.

Proposition 34. Theorem.

The opposite sides and angles of a parallelogram are equal to one another, and each diagonal bisects the parallelogram.

Let $A C D B$ be a parallelogram, of which $B C$ is a diagonal.
Then shall the opposite sides and angles of the figure be equal to one another ; and the diagonal BC shall bisect it.

Proof. Because AB and CD are parallel, and BC meets them, therefore the angle $A B C$ is equal to the alternate angle DCB ;
I. 29.

Again, because $A C$ and $B D$ are parallel, and $B C$ meets them,
therefore the angle $A C B$ is equal to the alternate angle
DBC.
I. 29 .

Hence in the triangles $A B C, D C B$,
Because $\left\{\begin{array}{l}\text { the angle } A B C \text { is equal to the angle } D C B, \\ \text { and the angle } A C B \text { is equal to the angle } D B C ;\end{array}\right.$ also the side $B C$ is common to both;
therefore the triangle $A B C$ is equal to the triangle DCB in all respects;
I. 26.
so that $A B$ is equal to $D C$, and $A C$ to $D B$;
and the angle BAC is equal to the angle CDB.
Also, because the angle $A B C$ is equal to the angle $D C B$, and the angle CBD equal to the angle BCA,
therefore the whole angle ABD is equal to the whole angle DCA.
And the triangles $\mathrm{ABC}, \mathrm{DCB}$ having been proved equal in all respects are equal in area.
Therefore the diagonal BC bisects the parallelogram ACDB.
Q.E.D.

EXERCISES ON PARALLELOGRAMS.

1. If one angle of a parallelogram is a right angle, all its angles are right angles.
2. If the opposite sides of a quadrilateral are equal, the figure is a parallelogram.
3. If the opposite angles of a quadrilateral are equal, the figure is a parallelogram.
4. If a quadrilateral has all its sides equal and one angle a right angle, all its angles are right angles.
5. The diagonals of a parallelogram bisect each other.
6. If the diagonals of a quadrilateral bisect each other, the figure is a parallelogram.
7. If two opposite angles of a parallelogram are bisected by the diagonal which joins them, the figure is equilateral.
8. If the diagonals of a parallelogram are equal, all its angles are right angles.
9. In a parallelogram which is not rectangular the diagonals are unequal.
10. Any straight line drawn through the middle point of a diagonal of a parallelogram and terminated by a pair of opposite sides, is bisected at that point.
11. If two parallelograms have two adjacent sides of one equal to two adjacent sides of the other, each to each, and one angle of one equal to one angle of the other, the parallelograms are equal in all respects.
12. Two rectangles are equal if two adjacent sides of one are equal to two adjacent sides of the other, each to each.
13. In a parallelogram the perpendiculars drawn from one pair of opposite angles to the diagonal which joins the other pair are equal.
14. If $A B C D$ is a parallelogram, and X, Y respectively the middle points of the sides $A D, B C$; shew that the figure $A Y C X$ is a parallelogram.

MISCELLANEOUS EXERCISES ON SECTIONS I. AND II.

1. Shew that the construction in Proposition 2 may generally be performed in eight different ways. Point out the exceptional case.
2. The bisectors of two vertically opposite angles are in the same straight line.
3. In the figure of Proposition 16, if AF is joined, shew
(i) that AF is equal to BC ;
(ii) that the triangle $A B C$ is equal to the triangle $C F A$ in all respects.
4. $A B C$ is a triangle right-angled at B, and $B C$ is produced to D : shew that the angle ACD is obtuse.
5. Shew that in any regular polygon of n sides each angle contains $\frac{2(n-2)}{n}$ right angles.
6. The angle contained by the bisectors of the angles at the base of any triangle is equal to the vertical angle together with half the sum of the base angles.
7. The angle contained by the bisectors of two exterior angles of any triangle is equal to half the sum of the two corresponding interior angles.
8. If perpendiculars are drawn to two intersecting straight lines from any point between them, shew that the bisector of the angle between the perpendiculars is parallel to (or coincident with) the bisector of the angle between the given straight lines.
9. If two points P, Q le taken in the equal sides of an isosceles triangle $A B C$, so that $B P$ is equal to $C Q$, shew that $P Q$ is parallel to BC.
10. $A B C$ and $D E F$ are two triangles, such that $A B, B C$ are equal and parallel to $D E, E F$, each to each ; shew that $A C$ is equal and parallel to DF.
11. Prove the second Corollary to Prop. 32 by drawing through any angular point lines parallel to all the sides.
12. If two sides of a quadrilateral are parallel, and the remaining two sides equal but not parallel, shew that the opposite angles are supplementary ; also that the diagonals are equal.

SEC'IION III.

THE AREAS OF PARALLELOGRAMS AND TRIANGLES.

Hitherto when two figures have been said to be equal, it has been implied that they are identically equal, that is, equal in all respects.

But figures may be equal in area without being equal in all respects, that is, without having the same shape.

The present section deals with parallelograms and triangles which are equal in area but not necessarily identically equal.
[The ultimate test of equality, as we have already seen, is afforded by Axiom 8, which asserts that magnitudes which may be made to coincide with one another are equal. Now figures which are not equal in all respects, cannot be made to coincide without first undergoing some change of form : hence the method of direct superposition is unsuited to the purposes of the present section.

We shall see however from Euclid's proof of Proposition 35, that two figures which are not identically equal, may nevertheless be so related to a third figure, that it is possible to infer the equality of their areas.]

Definitions.

1. The Altitude of a parallelogram with reference to a given side as base, is the perpendicular distance between the base and the opposite side.
2. The Altitude of a triangle with reference to a given side as base, is the perpendicular distance of the opposite vertex from the base.
[From this point the following symbols will be introduced into the text:

$$
=\text { for is equal to } ; \therefore \text { for therefore. }
$$

If it is thought desirable to shorten written work by the use of symbols and abbreviations, it is strongly recommended that only some well recognized system should be allowed, such, for example, as that given on page 11.]

Proposition 35. Theorem.
Parallelograms on the same base, and between the same parallels, are equal in area.

Let the parallelograms $A B C D$, EBCF be on the same base BC , and between the same parallels BC, AF.

Then shall the parallelogram. ABCD be equal in area to the parallelogram EBCF.

Case I. If the sides AD, EF, opposite to the base BC, are terminated at the same point D :
then each of the parallelograms $A B C D$, EBCF is double of the triangle BDC ; I. 34 . \therefore they are equal to one another. $A x .6$.

Case II. But if the sides AD, EF are not terminated at the same point :
then because $A B C D$ is a parallelogram,
\therefore the side $A D=$ the opposite side $B C$; I. 34 . similarly $E F=B C$; $\therefore A D=E F$. $A x .1$. \therefore the whole, or remainder, EA $=$ the whole, or remainder, FD. Then in the triangles FDC, EAB,

$$
\text { FD }=\mathrm{E} A, \quad \text { Proved }
$$

Because $\{$ and the side $D C=$ the opposite side $A B, \quad$ I. 34. $\left\{\begin{array}{l}\text { also the exterior angle } \mathrm{FDC}=\text { the interior opposite } \\ \text { angle } \mathrm{EAB} \text {, } \\ \text { I. } 29 .\end{array}\right.$
\therefore the triangle $\mathrm{FDC}=$ the triangle EAB . I. 4.
From the whole figure $A B C F$ take the triangle $F D C$; and from the same figure take the equal triangle EAB; then the remainders are equal.
$A x .3$. Therefore the parallelogram $A B C D$ is equal to the parallelogram EBCF.
Q.E.D,

Proposition 36. Theorem.
Parallelograms on equal bases, and between the same parallels, are equal in area.

Let $A B C D$, $E F G H$ be parallelograms on equal bases $B C$, FG, and between the same parallels AH, BG.
Then shall the parallelogram ABCD be equal to the parallelogram EFGH.
Construction. Join BE, CH.
Proof. Then because $\mathrm{BC}=\mathrm{FG}$; Hyp. and the side $\mathrm{FG}=$ the opposite side EH ; \quad. 34 . $\therefore B C=E H$: $A x .1$. and $B C$ is parallel to $E H$; Fiyp.
$\therefore \mathrm{BE}$ and CH are also equal and parallel. I. 33 . Therefore EBCH is a parallelogram. Def. 36.
Now the parallelograms $A B C D, E B C H$ are on the same base BC , and between the same parallels BC, AH;
\therefore the parallelogram $\mathrm{ABCD}=$ the parallelogram EBCH. I. 35 .
Also the parallelograms EFGH, EBCH are on the same base EH, and between the same parallels EH, BG ;
\therefore the parallelogram $\mathrm{EFGH}=$ the parallelogram EBCH. I. 35.
Therefore the parallelogram $A B C D$ is equal to the parallelogram EFGH.

From the last two Propositions we infer that:
(i) A parallelogram is equal in area to a rectangle of equal base and equal altitude.
(ii) Parallelograms on equal bases and of equal altitudes are equal in area.

Proposition 37. Theorem.

Triangles on the same base, and between the same parallels, are equal in area.

Let the triangles $A B C$, $D B C$ be upon the same base $B C$, and between the same parallels $B C, A D$.

Then shall the triangle ABC be equal to the triangle DBC .
Construction. Through B draw BE parallel to CA, to meet DA produced in E; I. 31 . through C draw CF parallel to $B D$, to meet AD produced in F.

Proof. Then, by construction, each of the figures EBCA, DBCF is a parallelogram.

Def. 36.
And since they are on the same base BC, and between the same parallels BC, EF ;
\therefore the parallelogram EBCA $=$ the parallelogram DBCF. I. 35.
Now the diagonal AB bisects EBCA ;
I. 34.
\therefore the triangle $A B C$ is half the parallelogram EBCA.
And the diagonal DC bisects DBCF;
I. 34.
\therefore the triangle DBC is half the parallelogram DBCF.
And the halves of equal things are equal. $A x .7$. Therefore the triangle ABC is equal to the triangle DBC. Q.E.D.

Proposition 38. Theorem.

Triangles on equal bases, and between the same parallels, are equal in area.

Let the triangles $\mathrm{ABC}, \mathrm{DEF}$ be on equal bases BC, EF, and between the same parallels $B F, A D$.

Then shall the triangle ABC be equal to the triangle DEF .
Construction. Through B draw BG parallel to CA, to meet DA produced in G; I. 31. through F draw FH parallel to ED, to meet AD produced in H .

Proof. Then, by construction, each of the figures GBCA, DEFH is a parallelogram.

Def. 36.
And since they are on equal bases BC, EF, and between the same parallels BF, GH;
\therefore the parallelogram GBCA $=$ the parallelogram DEFH. I. 36.

$$
\text { Now the diagonal DF bisects GBCA ; } \quad \text { I. } 34 .
$$

\therefore the triangle $A B C$ is half the parallelogram GBCA.
And the diagonal DF bisects DEFH ;
I. 34.
\therefore the triangle DEF is half the parallelogram DEFH.
And the halves of equal things are equal. $A x .7$. Therefore the triangle $A B C$ is equal to the triangle $D E F$. Q.E.D.

From this Proposition we infer that:
(i) Triangles on equal bases and of equal altitude are equal in area.
(ii) Of two triangles of the same altitude, that is the greater which has the greater base; and of two triangles on the same base, or on equal bases, that is the greater which has the greater altitude.

Proposition 39. Theorem.

Equal triangles on the same base, and on the same side of $i t$, are between the same parallels.

Let the triangles ABC , DBC which stand on the same base BC , and on the same side of it be equal in area.
Then shall the triangles ABC, DBC be between the same parallels; that. is, if AD be joined, AD shall be parallel to BC .

Construction. For if AD be not parallel to BC,
if possible, through A draw AE parallel to BC, \quad I. 31. meeting BD , or BD produced, in E . Join EC.

Proof. Now the triangles ABC, EBC are on the same base $B C$, and between the same parallels $B C, A E$;
\therefore the triangle $A B C=$ the triangle $E B C . \quad$ I. 37 .
But the triangle $\mathrm{ABC}=$ the triangle DBC ; Hyp.
\therefore the triangle $\mathrm{DBC}=$ the triangle EBC ;
that is, the whole is equal to a part ; which is impossible.
$\therefore A E$ is not parallel to $B C$.
Similarly it can be shewn that no other straight line through A, except AD, is parallel to BC.

Therefore $A D$ is parallel to $B C$.
Q.E.D.

From this Proposition it follows that:
Equal triangles on the same base have equal altitudes.

Proposition 40. Theorem.

Equal triangles, on equal bases in the same straight line, and on the same side of $i t$, are between the same parallels.

Let the triangles $A B C$, $D E F$ which stand on equal bases $B C, E F$, in the same straight line $B F$, and on the same side of it, be equal in area.
Then shall the triangles $\mathrm{ABC}, \mathrm{DEF}$ be between the same parallels; that is, if AD be joined, AD shall be parallel to BF .

Construction. For if AD be not parallel to BF, if possible, through A draw AG parallel to BF, I. 31. meeting ED, or ED produced, in G. Join GF.

Proof. Now the triangles ABC, GEF are on equal bases $B C, E F$, and between the same parallels $B F, A G$;
\therefore the triangle $A B C=$ the triangle GEF.
I. 38.

But the triangle $A B C=$ the triangle DEF: Hyp.
\therefore the triangle $D E F=$ the triangle GEF :
that is, the whole is equal to a part ; which is impossible. $\therefore A G$ is not parallel to BF.
Similarly it can be shewn that no other straight line through A, except $A D$, is parallel to $B F$.

Therefore $A D$ is parallel to $B F$.

> Q.E.D.

From this Proposition it follows that:
(i) Equal triangles on equal bases have equal altitudes.
(ii) Equal triangles of equal altitudes have equal bases.

EXERCISES ON PROPOSITIONS 37-40.

Definition. Each of the three straight lines which join the angular points of a triangle to the middle points of the opposite sides is called a Median of the triangle.
on Prop. 37.

1. If, in the figure of Prop. 37, $A C$ and $B D$ intersect in K, shew that
(i) the triangles $\mathrm{AKB}, \mathrm{DKC}$ are equal in area.
(ii) the quadrilaterals EBKA, FCKD are equal.
2. In the figure of I .16 , shew that the triangles $A B C, F B C$ are equal in area.
3. On the base of a given triangle construct a second triangle, equal in area to the first, and having its vertex in a given straight line.
4. Describe an isosceles triangle equal in area to a given triangle and standing on the same base.

$$
\text { on Prop. } 38 .
$$

5. A triangle is divided by each of its medians into two parts of equal area.
6. A parallelogram is divided by its diagonals into four triangles of equal area.
7. $A B C$ is a triangle, and its base $B C$ is bisected at X; if Y be any point in the median $A X$, shew that the triangles $A B Y, A C Y$ are equal in area.
8. In $A C$, a diagonal of the parallelogram $A B C D$, any point X is taken, and $X B, X D$ are drawn : shew that the triangle $B A X$ is equal to the triangle DAX.
9. If two triangles have two sides of one respectively equal to two sides of the other, and the angles contained by those sides supplementary, the triangles are equal in area.

$$
\text { on Prop. } 39 .
$$

10. The straight line which joins the middle points of two sides of a triangle is parallel to the third side.
11. If two straight lines AB, CD intersect in O , so that the triangle AOC is equal to the triangle DOB , shew that AD and CB are parallel.

$$
\text { on Prop. } 40 .
$$

12. Deduce Prop. 40 from Prop. 39 by joining AE, AF in the figure of page 78.

Proposition 41. Theorem.

If a parallelogram and a triangle be on the same base and between the same parallels, the parallelogram shall be double of the triangle.

Let the parallelogram ABCD, and the triangle EBC be upon the same base BC , and between the same parallels $B C, A E$.
Then shall the parallelogram ABCD be double of the triangle EBC.

Construction. Join AC.
Proof. Now the triangles ABC, EBC are on the same base $B C$, and between the same parallels $B C, A E$; \therefore the triangle $\mathrm{ABC}=$ the triangle $\mathrm{EBC} . \quad$ I. 37.
And since the diagonal AC bisects ABCD ; I. 34.
\therefore the parallelogram $A B C D$ is double of the triangle $A B C$.
Therefore the parallelogram ABCD is also double of the triangle EBC.
Q.E.D.

EXFRCISES.

1. $A B C D$ is a parallelogram, and X, Y are the middle points of the sides $A D, B C$; if Z is any point in $X Y$, or $X Y$ produced, shew that the triangle $A Z B$ is one quarter of the parallelogram $A B C D$.
2. Describe a right-angled isosceles triangle equal to a given square.
3. If $A B C D$ is a parallelogram, and X, Y any points in $D C$ and $A D$ respectively : shew that the triangles $A X B, B Y C$ are equal in area.
4. $A B C D$ is a parallelogram, and P is any point within it ; shew that the sum of the triangles $P A B, P C D$ is equal to half the parallelogram.

Proposition 42. Problem.

To describe a parallelogram that shall be equal to a given triangle, and have one of its angles equal to a given angle.

Let $A B C$ be the given triangle, and D the given angle. It is required to describe a parallelogram equal to ABC , and having one of its angles equal to D .
Construction. Bisect BC at E. I. 10. At E in CE, make the angle CEF equal to D ; I. 23. through A draw AFG parallel to EC ; I. 31. and through C draw CG parallel to EF.
Then FECG shall be the parallelogram required. Join AE.
Proof. Now the triangles ABE, AEC are on equal bases BE, EC, and between the same parallels;
\therefore the triangle $\mathrm{ABE}=$ the triangle AEC ;
I. 38.
\therefore the triangle ABC is double of the triangle AEC.
But FECG is a parallelogram by construction ; Def. 36 . and it is double of the triangle AEC,
being on the same base EC, and between the same parallels EC and AG.
Therefore the parallelogram FECG is equal to the triangle ABC ;
and it has one of its angles CEF equal to the given angle D. Q.E.F.

EXERCISES.

1. Describe a parallelogram equal to a given square standing on the same base, and having an angle equal to half a right angle.
2. Describe a rhombus equal to a given parallelogram and standing on the same base. When does the construction fail?

Definition. If in the diagonal of a parallelogram any point is taken, and straight lines are drawn through it parallel to the sides of the parallelogram ; then of the four parallelograms into which the whole figure is divided, the two through which the diagonal passes are called Parallelograms about that diagonal, and the other two, which with these make up the whole figure, are called the complements of the parallelograms about the diagonal.

Thus in the figure given above, AEKH, KGCF are parallelograms about the diagonal AC ; and the shaded figures HKFD, EBGK are the complements of those parallelograms.

Note. A parallelogram is often named by two letters only, these being placed at opposite angular points.

Proposition 43. Theorem.

The complements of the parallelograms about the diagonal of any parallelogram, are equal to one another.

Let $A B C D$ be a parallelogram, and KD, KB the complements of the parallelograms EH, GF about the diagonal AC.
Then shall the complement BK be equal to the complement KD .
Proof. Because EH is a parallelogram, and AK its diagonal, \therefore the triangle $\mathrm{AEK}=$ the triangle AHK . I. 34 .
Similarly the triangle $\mathrm{KGC}=$ the triangle KFC .
Hence the triangles AEK, KGC are together equal to the triangles AHK, KFC.
But since the diagonal $A C$ bisects the parallelogram $A B C D$; \therefore the whole triangle $A B C=$ the whole triangle ADC. I. 34. Therefore the remainder, the complement BK , is equal to the remainder, the complement KD.
Q.E.D.

EXERCISES.
In the figure of Prop. 43, prove that
(i) The parallelogram ED is equal to the parallelogram BH .
(ii) If $K B, K D$ are joined, the triangle $A K B$ is equal to the triangle AKD.

Proposition 44. Problem.

To a given straight line to apply a parallelogram which shall be equal to a given triangle, and have one of its angles equal to a given angle.

Let $A B$ be the given straight line, C the given triangle, and D the given angle.

It is required to apply to the straight line AB a parallelogram equal to the triangle C , and having an angle equal to the angle D .

Construction. On AB produced describe a parallelogram $B E F G$ equal to the triangle C, and having the angle EBG equal to the angle D.
I. 22 and I. 42*. Through A draw AH parallel to BG or EF, to meet FG produced in H .
I. 31 .

Join HB.

Then because AH and EF are parallel, and HF meets them,
\therefore the angles AHF, HFE together = two right angles. 1. 29. Hence the angles BHF, HFE are together less than two right angles;
$\therefore \mathrm{HB}$ and FE will meet if produced towards B and E. $A x .12$.
Produce HB and FE to meet at K.
Through K draw KL parallel to EA or FH ; I. 31. and produce HA , GB to meet KL in the points L and M .

Then shall BL be the parallelogram required.

Proof. Now FHLK is a parallelogram, Constr. and LB, BF are the complements of the parallelograms about the diagonal HK:
\therefore the complement $\mathrm{LB}=$ the complement BF . I. 43.
But the triangle $\mathrm{C}=$ the figure BF ; Constr. \therefore the figure $\mathrm{LB}=$ the triangle C .
Again the angle $A B M=$ the vertically opposite angle GBE ;
also the angle $\mathrm{D}=$ the angle GBE ;
Constr. \therefore the angle $\mathrm{ABM}=$ the angle D .
Therefore the parallelogram LB, which is applied to the straight line $A B$, is equal to the triangle C, and has the angle $A B M$ equal to the angle D.
Q.E.F.

* This step of the construction is effected by first describing on $A B$ producell a triangle whose sides are respectively equal to those of the triangle C (1. 22); and by then making a parallelogram equal to the triangle so drawn, and having an angle equal to D (1. 42).

QUESTIONS FOR REVISION.

1. Quote Euclid's Twelfth Axiom. What objections have been raised to it, and what substitute for it has been suggested?
2. Which of Euclid's Propositions, dealing with parallel straight lines, depends on Axiom 12? Furnish an alternative proof.
3. Straight lines which are parallel to the same straight line are parallel to one another [Prop. 30]. Deduce this from Playfair's Axiom.
4. Define α parallelogram, an altitude of a triangle, a median of a triangle, parallelograms about the diagonal of a parallelogram.
5. What is meant by superposition? On what Axiom does this method depend? Give instances of figures which are equal in area, but which cannot be superposed.
6. In fig. 2 of Prop. $3 \overline{5}$ shew how one parallelogram may be cut into pieces, which, when fitted together in other positions, make up the other parallelogram.

Proposition 45. Problem.

To describe a parallelogram equal to a given rectilineal figure, and having an angle equal to a given angle.

Let $A B C D$ be the given rectilineal figure, and E the given angle.

It is required to describe a paralielogram equal to ABCD , and having an angle equal to E .
Suppose the given rectilineal figure to be a quadrilateral.

Construction. Join BD.

Describe the parallelogram FH equal to the triangle $A B D$, and having the angle FKH equal to the angle E. I. 42. To GH apply the parallelogram GM, equal to the triangle DBC, and having the angle GHM equal to E .
I. 44. Then shall FKML be the parallelogram required.

Proof. Because each of the angles GHM, FKH = the angle E;
\therefore the angle FKH $=$ the angle GHM.
To each of these equals add the angle GHK ;
then the angles FKH, GHK together = the angles GHM, GHK.
But since FK, GH are parallel, and KH meets them ;
\therefore the angles FKH, GHK together $=$ two right angles ; I. 29.
\therefore also the angles GHM, GHK together $=$ two right angles ;
$\therefore \mathrm{KH}, \mathrm{HM}$ are in the same straight line.
I. 14.

Again, because KM, FG are parallel, and HG meets them, \therefore the angle MHG $=$ the alternate angle HGF. I. 29.
To each of these equals add the angle HGL;
then the angles MHG, HGL together = the angles HGF, HGL.
But because HM, GL are parallel, and HG meets them,
\therefore the angles MHG, HGL together = two right angles: I. 29.
\therefore also the angles HGF, HGL together = two right angles: \therefore FG, GL are in the same straight line. I. 14.
And because KF and ML are each parallel to HG, Constr. therefore KF is parallel to ML ; 1.30. and KM, FL are parallel; Constr.
\therefore FKML is a parallelogram. Def. 36.
Again, because the parallelogram $\mathrm{FH}=$ the triangle ABD , and the parallelogram $\mathrm{GM}=$ the triangle DBC ; Constr. \therefore the whole parallelogram FKML $=$ the whole figure ABCD ; and it has the angle FKM equal to the angle E .

By a series of similar steps, a parallelogram may be constructed equal to a rectilineal figure of more than four sides.
Q.E.F.

The following Problem is important, and furnishés a useful application of the principles of the foregoing propositions.

ADDITIONAL PROBLEM.

To describe a triangle equal in area to a given quadrilateral.

Let $A B C D$ be the given quadrilateral.
It is required to describe a triangle equal to ABCD in area.
Construction.
Join BD.
Through C draw $C X$ parallel to $B D$, meeting AD produced in X. Join BX.
Then $X A B$ shall be the required triangle.
Proof. Now the triangles XDB, CDB are on the same base DB anil between the same parallels DB, XC ;
\therefore the triangle $\mathrm{XDB}=$ the triangle CDB in area.
I. 37.

To each of these equals add the triangle ADB ; then the triangle $X A B=$ the figure $\AA B C D$.

EXERCISE.

Construct a rectilineal figure equal to a given rectilineal figure, and having fewer sides by one than the given figure.

Hence shew how to construct a triangle equal to a given rectilineal figure.

Proposition 46. Problem.

To describe a square on a given straight line.

Let $A B$ be the given straight line.
It is required to describe a square on AB .
Constr. From A draw $A C$ at right angles to $A B$; I, 11. and make $A D$ equal to $A B$.
I. 3.

Through D draw DE parallel to AB ; I. 31. and through B draw $B E$ parallel to $A D$, meeting $D E$ in E. Then shall ADEB be a square.
Proof. For, by construction, ADEB is a parallelogram : $\therefore A B=D E$, and $A D=B E$.
I. 34 . But $A D=A B$;

Constr:
\therefore the four straight lines $A B, A D, D E, E B$ are all equal ;
that is, the figure $A D E B$ is equilateral.
Again, since $A B, D E$ are parallel, and $A D$ meets them,
\therefore the angles $B A D, A D E$ together $=$ two right angles ; $\mathrm{I}, 29$. but the angle $B A D$ is a right angle ; Constr.
\therefore also the angle ADE is a right angle.
And the opposite angles of a parallelogranı are equal ; i. 34. \therefore each of the angles DEB, EBA is a right angle :
that is the figure $A D E B$ is rectangular. Hence it is a square, and it is described on $A B$.

> Q.E.F.

Corollary. If one angle of a parallelogram is a right angle, all its angles ure right angles.
E.c.

In a right-angled triangle the square described on the hypotenuse is equal to the sum of the squares described on the other two sides.

Let $A B C$ be a right-angled triangle, having the angle BAC a right angle.

Then shall the square described on the hypotenuse BC be equal to the sum of the squares described on BA, AC.

Construction. On BC describe the square BDEC; I. 46. and on BA, AC describe the squares BAGF, ACKH.

Through A draw AL parallel to BD or CE ;
I. 31. and join AD, FC.

Proof. Then because each of the angles BAC, BAG is a right angle,
$\therefore C A$ and $A G$ are in the same straight line.
I. 14.

Now the angle CBD $=$ the angle FBA, for each of them is a right angle.

Add to each the angle ABC:
then the whole angle $A B D=$ the whole angle $F B C$.

$$
\text { Because }\left\{\begin{array}{rlr}
\mathrm{AB} & =\mathrm{FB}, \\
\text { and } B D & =\mathrm{BC}, \\
\text { also the angle } A B D & =\text { the angle } \mathrm{FBC} ; & \text { Proved. } . \\
\therefore \text { the triangle } A B D & =\text { the triangle } F B C . & \text { I. } 4 .
\end{array}\right.
$$

Now the parallelogram BL is double of the triangle $A B D$, being on the same base BD, and between the same parallels BD, AL.
I. 41.

And the square $G B$ is double of the triangle $F B C$, being on the same base FB , and between the same parallels FB, GC.

But doubles of equals are equal :
I. 41.
$A x .6$. therefore the parallelogram $\mathrm{BL}=$ the square GB .
Similarly, by joining AE, BK it can be shewn that the parallelogram $\mathrm{CL}=$ the square CH .
Therefore the whole square $B E=$ the sum of the squares GB, HC :
that is, the square described on the hypotenuse $B C$ is equal
to the sum of the squares described on the two sides
$B A, A C$.
Q.E.D.

Note. It is not necessary to the proof of this Proposition that the chree squares should be described external to the triangle $A B C$; and since each square may be drawn either towards or away from the triangle, it may be shewn that there are $2 \times 2 \times 2$, or eight, possible constructions.

Obs. The following properties of a square, though not formally enunciated by Euclid, are employed in subsequent proofs. [See I. 48.]
(i) The squares on equal straight lines are equal.
(ii) Equal squares stand upon equal straight lines.

EXERCISES ON PROPOSITION 47.

1. In the figure of this Proposition, shew that
(i) If BG, CH are joined, these straight lines are parallel ;
(ii) The points $\mathrm{F}, \mathrm{A}, \mathrm{K}$ are in one straight line ;
(iii) FC and AD are at right angles to one another ;
(iv) If $\mathrm{GH}, \mathrm{KE}, \mathrm{FD}$ are joined, the triangle GAH is equal to the given triangle in all respects; and the triangles $F B D, K C E$ are each equal in area to the triangle $A B C$.
[See Fx. 9, p. 79.]
2. On the sides $A B, A C$ of any triangle $A B C$, squares $A B F G$, ACKH are described both toward the triangle, or both on the side remote from it : shew that the straight lines BH and CG are equal.
3. On the sides of any triangle $A B C$, equilateral triangles $B C X$, CAY, $A B Z$ are described, all externally, or all towards the triangle : shew that $A X, B Y, C Z$ are all equal.
4. The square described on the diagonal of a given square, is double of the given square.
5. ABC is an equilateral triangle, and AX is the perpendicular drawn from A to BC : shew that the square on AX is three times the square on BX .
6. Describe a square equal to the sum of two given squares.
7. From the vertex A of a triangle $A B C, A X$ is drawn perpendicular to the base: shew that the difference of the squares on the sides $A B$ and $A C$, is equal to the difference of the squares on $B X$ and $C X$, the segments of the base.
8. If from any point O within a triangle $A B C$, perpendiculars $O X, O Y, O Z$ are drawn to the sides $B C, C A, A B$ respectively : shew that the sum of the squares on the segments $A Z, B X, C Y$ is equal to the sum of the squares on the segments $A Y, C X, B Z$.
9. $A B C$ is a triangle right-angled at A; and the sides $A B, A C$ are intersected by a straight line $P Q$, and $B Q, P C$ are joined. Prove that the sum of the squares on $B Q, P C$ is equal to the sum of the squares on BC, PQ.
10. In a right-angled triangle four times the sum of the squares on the two medians drawn from the acute angles is equal to five tinnes the square on the hypotenuse.

NOTES ON PROPOSITION 47.

It is believed that Proposition 47 is due to Pythagoras, a Greek philosopher and mathematician, who lived about two centuries before Euclid.

Many experimental proofs of this theorem have been given by means of actual dissection: that is to say, it has been shewn how the squares on the sides containing the right angle may be cut up into pieces which, when fitted together in other positions, exactly make up the square on the hypotenuse. Two of these methods of dissection are given below.
I. In the adjoining diagram $A B C$ is the given right-angled triangle, and the figures AF, HK are the squares on AB, AC, placed side by side.
$F D$ is made equal to $E H$ or $A C$; and the two squares AF, HK are cut along the lines ED, DB.
Then it will be found that the triangle EHD may be placed so as to fill up the space CAB; and the triangle BFD may be made to fill the space CKE.

Hence the two squares AF, HK may be fitted together so as to form the single figure CBDE, which
 will be found to be a perfect square, namely the square on the hypotenuse BC.
II. In the figure of I .47 , let DB and EC be produced to meet FG and AH in L and N respectively; and let LM be drawn parallel to $B C$.

Then it will be found that the several parts of the two squares FA, AK can be fitted together (in the places bearing corresponding numbers) so as exactly to fill up the square DC.

Proposition 48. Theorem.

If the square described on one side of a triangle be equal to the sum of the squares described on the other two sides, then the angle contained by these two sides shall be a right angle.

Let ABC be a triangle ; and let the square described on $B C$ be equal to the sum of the squares described on $B A, A C$.

Then shall the angle BAC be a right angle.
Construction. From A draw AD at right angles to AC; I. 11. and make $A D$ equal to $A B$.
I. 3. Join DC.
Proof. Then, because $\mathrm{AD}=\mathrm{AB}$,
Constr.
\therefore the square on $A D=$ the square on $A B$.
To each of these add the square on CA ;
then the sum of the squares on $C A, A D=$ the sum of the squares on CA, AB.

But, because the angle DAC is a right angle, Constr.
\therefore the square on $\mathrm{DC}=$ the sum of the squares on $C A, A D$. I.47.
And, by hypothesis, the square on $\mathrm{BC}=$ the sum of the squares on CA, AB;
\therefore the square on $\mathrm{DC}=$ the square on BC :
\therefore also the side $D C=$ the side $B C$.
Then in the triangles DAC, BAC,
Because $\left\{\begin{array}{cr}\text { and } \mathrm{AC} \text { is common to both ; } & \text { Constr. } \\ \text { also the third side } \mathrm{DC}=\text { the third side } \mathrm{BC} ; & \text { Proved } .\end{array}\right.$ \therefore the angle DAC $=$ the angle BAC.

But DAC is a right angle.
Therefore also BAC is a right angle. Q.ED.

Theorem A. Two right-angled triangles which have their hypotenuses equal, and one side of one equal to one side of the other, are identically equal.

Let $A B C, D E F$ be two \triangle^{8} right-angled at B and E, having $A C$ equal to $D F$, and $A B$ equal to $D E$.

Then shall the $\triangle \mathrm{ABC}$ be equal to the $\triangle \mathrm{DEF}$ in all respects.
For apply the $\triangle A B C$ to the $\triangle D E F$, so that $A B$ may coincide with the equal line $D E$, and C may fall on the side of $D E$ remote from F. Let C^{\prime} be the point on which C falls.

Then $D E C^{\prime}$ represents the $\triangle A B C$ in its new position. Now each of the \angle^{s} DEF, DEC' is a rt. \angle; Hyp. $\therefore E F$ and $E C^{\prime}$ are in one st. line. 14.
Then in the $\triangle \mathrm{C}^{\prime} \mathrm{DF}$, because $\mathrm{DF}=\mathrm{DC}^{\prime}$ (i.e. AC), Hyp. \therefore the $\angle \mathrm{DFC}^{\prime}=$ the $\angle \mathrm{DC}^{\prime} F$.
I. 5.

Hence in the two \triangle^{3} DEF, DEC^{\prime},

\therefore the $\triangle^{3} D E F, D E C^{\prime}$ are equal in all respects ;
that is, the $\triangle^{s} D E F, A B C$ are equal in all respects. Q.E.D.

Alternative Proof. Since the $\angle \mathrm{ABC}$ is a rt. angle;

$$
\therefore \text { the sq. on } A C=\text { the sqq. on } A B \text {, BC. }
$$

Similarly, the sq. on $D F=$ the sqq. on $D E, E F$;
I. 47.

But the sq. on $\mathrm{AC}=$ the sq. on DF (since $\mathrm{AC}=\mathrm{DF}$, Jyp.) ;
\therefore the sqq. on $A B, B C=$ the sqq. on $D E, E F$.
And of these, the sq. on $\mathrm{AB}=$ the sq. on DE (since $\mathrm{AB}=\mathrm{DE}$, Hyp.);

$$
\therefore \text { the sq. on } \mathrm{BC}=\text { the sq. on } \mathrm{EF} ; \quad A x .3 \text {. }
$$

$$
\therefore B C=E F \text {. }
$$

Hence the three sides of the $\triangle A B C$ are respectively equal to the three sides of the \triangle DEF;
\therefore the $\triangle A B C=$ the $\triangle D E F$ in all respects.
I. 8 .

Theorem B. If two triangles have two sides of the one equal to two sides of the other, each to each, ant have likewise the angles opposite to one pair of equal sides equal, then the angles opposite to the other pair of equal sides shall be either equal or supplementary, and in the former case the triangles shall be equal in all respects.

Fig. 1.

Fig. 2.

Fig. 3.

Let $A B C$, DEF be two triangles, in which the side $A B=$ the side $D E$,
the side $A C=$ the side $D F$, and the $\angle A B C=$ the $\angle D E F$.
Then shall the $\angle^{8} \mathrm{ACB}$, DFE be either equal or supplementary, and in the former case the triangles shall be equal in all respects.

$$
\text { If the } \angle \mathrm{BAC}=\text { the } \angle \mathrm{EDF}, \quad[\text { Figs. } 1 \text { and } 2 .]
$$

then the $\angle A C B=$ the $\angle D F E$, and the triangles are equal in all respects.

But if the $\angle B A C$ be not equal to the $\angle E D F$, [Figs. 1 and 3.] let the $\angle E D F$ be greater than the $\angle B A C$.
At D in $E D$ make the $\angle E D F^{\prime}$ equal to the $\angle B A C$.
Then the $\triangle^{5} \mathrm{BAC}, E D F^{\prime}$ are equal in all respects. 1. 26.

$$
\begin{array}{rr}
\therefore A C=D F^{\prime} ; \\
b u t A C=D F^{\prime} ; \\
\therefore D F=D F^{\prime}, & \text { Hyp. } \\
\therefore \text { the angle } D F F^{\prime}=\text { the } \angle D F^{\prime} F . & \text { I. } 5 . \\
\text { But the } \angle^{s} D F^{\prime} F, D F^{\prime} E \text { are supplementary, } & \text { I. } 13 . \\
\therefore \text { the } \angle^{8} D F^{\prime} D F^{\prime} E \text { are supplementary } \\
\text { that is, the } \angle^{8} D F E, A C B \text { are supplementary. } & \\
& \text { Q.E.D. }
\end{array}
$$

Corollakies. Three cases of this theorem deserve special attention.

It has been proved that if the angles ACB, DFE are not supplementary they are equal:
and angles which are both acute or both obtuse cannot be supplementary ; hence
(i) If the angles $\mathrm{ACB}, \mathrm{DFE}$ opposite to the two equal sides $A B, D E$ are both acute or both obtuse they cannot be supplementary, and are therefore equal ; or if one of them is a right angle, the other must also be a right angle (whether considered as supplementary or equal to it) :
in either case the triangles are equal in all respects.
(ii) If the two given angles are right angles or obtuse angles, it follows that the angles ACB, DFE must be both acute, and therefore equal, by (i) : so that the triangles are equal in all respects.
(iii) If in each triangle the side opposite the given angle is not less than the other given side; that is, if AC and $D F$ are not less than $A B$ and $D E$ respectively, then the angles ACB, DFE cannot be greater than the angles $A B C, D E F$ respectively;
therefore the angles ACB, DFE are both acute;
hence, as above, they are equal ;
and the triangles $A B C, D E F$ are equal in all respects.

Theorem C. The straight line drawn through the middle point of a side of a triangle parallel to the base, bisects the remaining side.

Let $A B C$ be a \triangle, and Z the middle point of the side $A B$. Through Z, ZY is drawn par to BC.

Then shall Y be the middle point of AC .
Through Z draw $Z X$ par ${ }^{1}$ to $A C$.
I. 31.

Then in the $\triangle^{s} A Z Y, Z B X$, because $Z Y$ and $B C$ are par ${ }^{1}$,
\therefore the $\angle A Z Y=$ the $\angle Z B X ; \quad$ I. 29.
and because $Z X$ and $A C$ are par ${ }^{1}$,
\therefore the $\angle \mathrm{ZAY}=$ the $\angle \mathrm{BZX}$; 1. 29.

$$
\text { also } \mathrm{AZ}=\mathrm{ZB}: \quad \text { Hyp. }
$$

$$
\therefore \mathrm{AY}=\mathrm{ZX} .
$$

But ZXCY is a par ${ }^{\mathrm{m}}$ by construction ;

$$
\therefore \mathrm{ZX}=\mathrm{YC} .
$$

I. 34.

Hence $A Y=Y C$; that is, $A C$ is bisected at Y .
Q.E.D.

Theorem D. The straight line which joins the middle points of two sides of a triangle, is parallel to the third side.

Let $A B C$ be a \triangle, and Z, Y the middle points of the sides AB, AC.

Then shall ZY be parl to BC.
Produce ZY to V , making YV equal to ZY.

Join CV.
Then in the $\triangle^{8} A Y Z, C Y V$,
Because $\left\{\begin{aligned} \mathrm{AY} & =\mathrm{CY}, \quad \text { Hyp. } \\ \text { and } \mathrm{YZ} & =\mathrm{YV}, \text { Constr. }\end{aligned}\right.$

$$
\text { the vert. opp. } \angle \mathrm{CYV} \text {; }
$$

I. 15.

$$
\therefore A Z=C V,
$$

I. 4 .
and the $\angle \mathrm{ZAY}=$ the $\angle \mathrm{VCY}$; hence CV is par to $A Z$.
I. 27.

But $C V$ is equal to $A Z$, that is, to $B Z$
Hyp.
$\therefore \mathrm{CV}$ is equal and par to BZ :
$\therefore \mathrm{ZV}$ is equal and par to BC : that is, $Z Y$ is par to BC.
I. 33.
Q.E.D.
[A second proof of this proposition may be derived from I. 38, 39.]
Definition. Three or more straight lines are said to be concurrent when they meet in one point.

Theorem E. The perpendiculars drawn to the sides of a triangle from their middle points are concurrent.

Let $A B C$ be a \triangle, and X, Y, Z the middle points of its sides.

Then shall the perps drawn to the sides from $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be concurrent.

From Z and Y draw perp ${ }^{s}$ to $A B, A C$; these perps ${ }^{s}$, since they cannot be parallel, will meet at some point $\mathrm{O} \quad A x .12$. Join OX.

It is required to prove that OX is perp. to BC ,

> Join OA, OB, OC.

In the \triangle^{5} OYA, OYC,
Because $\left\{\begin{array}{c}\text { YA }=Y C \text {, } \\ \text { and } O Y \text { is common to both ; } \\ \text { also the } \angle O Y A=\text { the } \angle O Y G, \text { being } \mathrm{rt} . \angle^{8} \text {; }\end{array}\right.$
Hyp.
$\therefore O A=O C$.
I. 4.
Similarly, from the \triangle^{s} OZA, OZB,
it may be proved that $O A=O B$.
Hence OA, OB, OC are all equal.
Again, in the \triangle^{s} OXB, OXC
Because $\left\{\begin{array}{c}B X=C X, \\ \text { and } X O \text { is common to both ; } \\ \text { also } O B=O C \text { : }\end{array}\right.$
\therefore the $\angle \mathrm{OXB}=$ the $\angle \mathrm{OXC}$;
Нур.
Proved.
but these are adjacent \angle^{8};
\therefore they are rt. \angle^{3};
I. 8 .
Def. 10.
that is, $O X$ is perp. to $B C$.
Hence the three perp ${ }^{5}$ OX, OY, OZ meet in the point O.
Q.E.D.

Theorem F. The bisectors of the angles of a triangle are concurrent.

Let $A B C$ be a \triangle.
Then shall the bisectors of the $\angle^{8} \mathrm{ABC}$,
BCA, BAC be concurrent.
Bisect the $\angle^{s} \mathrm{ABC}, \mathrm{BCA}$, by straight lines which must meet at some point 0 .
$A x .12$.

> Join AO.

It is required to prove that AO bisects the
 $\angle B A C$.

From O draw OP, OQ, OR perp. to the sides of the \triangle.
Then in the \triangle^{s} OBP, OBR,
Because $\left\{\begin{array}{cl}\text { the } \angle \mathrm{OBP}=\text { the } \angle \mathrm{OBR}, & \text { Constr. } \\ \text { and } \begin{array}{c}\text { the } \\ \angle \mathrm{OPB}\end{array}=\text { the } \angle \mathrm{ORB}, \text {, being rt. } \angle^{8}, & \text { Constr. } \\ \text { and } \mathrm{OB} \text { is common } ;\end{array}\right.$

$$
\therefore \mathrm{OP}=\mathrm{OR} \text {. }
$$

I. 26.

Similarly from the $\triangle^{8} O C P, O C Q$, it may le shewn that $O P=O Q$,
$\therefore \mathrm{OP}, \mathrm{OQ}, \mathrm{OR}$ are all equal.
Again in the \triangle^{8} ORA, OQA,
Because $\left\{\begin{array}{c}\text { the } \angle^{8} \text { ORA, OQA are } \mathrm{rt.} \angle^{\mathrm{s}}, \\ \text { and the hypotenuse OA is common, } \\ \text { also OR=OQ; }\end{array}\right.$ Constr.
\therefore the \angle RAO $=$ the \angle QAO. Proved.

That is, $A O$ is the bisector of the $\angle B A C$.
Hence the bisectors of the three L^{s} meet at the point O .
Q.E.D.

Theorem G. The medians of a triangle are concurrent. Let $A B C$ be a \triangle.
Then shall its three medians be concurrent.
Let BY and CZ be two of the medians, and let them intersect at O . Join AO,
and produce it to meet BC in X . It is required to shew that AX is the remaining median of the Δ.
Through C draw CK parallel to BY: produce $A X$ to meet CK at K.
 Join BK.

$$
\text { In the } \triangle A K C \text {, }
$$

because Y is the middle point of $A C$, and YO is parallel to CK, $\therefore \mathrm{O}$ is the middle point of AK. Theorem C .

Again in the $\triangle A B K$, since Z and O are the middle points of $A B, A K$, $\therefore \mathrm{ZO}$ is parallel to BK ,

Theorem D. that is, OC is parallel to BK : \therefore the figure BKCO is a par ${ }^{m}$.
But the diagonals of a parm bisect one another, Ex. 5, p. 70.
$\therefore \mathrm{X}$ is the middle point of $B C$.
That is, $A X$ is a median of the \triangle.
Hence the three medians meet at the point O. Q.E.D.
Corollary. The three medians of a triangle cut one another at a point of trisection, the greater segment in each being towards the angular point.

For in the above figure it has been proved that

$$
A O=O K \text {, }
$$

also that OX is half of OK ;
$\therefore \mathrm{OX}$ is half of OA :
that is, $O X$ is one third of $A X$.
Similarly OY is one third of BY, and OZ is one third of CZ .
Q.E.D.

By means of this Corollary it may be shewn that in any triangle the shorter median bisects the greater side.
[The point of intersection of the three medians of a triangle is called the centroid. It is shewn in mechanics that a thin triangular plate will balance in any position about this point; therefore the centroid of a triangle is also its centre of gravity.]

Theorem H. The perpendiculars drawn from the vertices of a triangle to the opposite sides are concurrent.

Let $A B C$ be a \triangle, and $A D, B E, C F$ the three perp ${ }^{8}$ drawn from the vertices to the opposite sides.

Then shall the perps ${ }^{s} \mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ be concurrent.
Through A, B, and C draw straight lines MN, NL, LM parallel to the opposite sides of the Δ.

Then the figure BAMC is a par ${ }^{m}$.
Def. 36.
$\therefore A B=M C$.
I. 34 .

Also the figure BACL is a par ${ }^{\mathrm{m}}$.
$\therefore \mathrm{AB}=\mathrm{LC}$,
$\therefore \mathrm{LC}=\mathrm{CM}$:
that is, C is the middle point of LM.
So also A and B are the middle points of $M N$ and $N L$.
Hence AD, BE, CF are the perp ${ }^{8}$ to the sides of the $\triangle L M N$ from their middle points. Ex. 3, p. 60.
But these perp ${ }^{s}$ meet in a point :
Theorem E. that is, the perp ${ }^{8}$ drawn from the vertices of the $\triangle A B C$ to the opposite sides meet in a point. Q.E.D.

Definitions.

(i) The intersection of the perpondiculars drawn from the vertices of a triangle to the opposite sides is called its orthocentre.
(ii) The triangle formed by joining the feet of the perpendiculars is called the pedal triangle.

EXERCISES ON BOOK I.

ON THE IDENTICAL EQUALITY OF TRIANGLES.

1. If in a triangle the perpendicular from the vertex on the base bisects the base, then the triangle is isosceles.
2. If the bisector of the vertical angle of a triangle is also perpendicular to the base, the triangle is isosceles.
3. If the bisector of the vertical angle of a triangle also bisects the base, the triangle is isosceles.
[Produce the bisector, and complete the construction after the manner of I. 16.]
4. If in a triangle a pair of straight lines drawn from the extremities of the base, making equal angles with the other sides, are equal, the triangle is isosceles.
5. If in a triangle the perpendiculars drawn from the extremities of the base to the opposite sides are equal, the triangle is isosceles.
6. Two triangles $A B C, A B D$ on the same base $A B$, and on opposite sides of it, are such that $A C$ is equal to $A D$, and $B C$ is equal to $B D$: shew that the line joining the points C and D is perpendicular to AB.
7. $A B C$ is a triangle in which the vertical angle $B A C$ is bisected by the straight line $A X$: from B draw $B D$ perpendicular to $A X$, and produce it to meet $A C$, or $A C$ produced, in E; then shew that $B D$ is equal to $D E$.
8. In a quadrilateral $A B C D, A B$ is equal to $A D$, and $B C$ is equal to $D C$: shew that the diagonal $A C$ bisects each of the angles which it joins.
9. In a quadrilateral $A B C D$ the opposite sides $A D, B C$ are equal, and also the diagonals $A C, B D$ are equal : if $A C$ and $B D$ intersect at K , shew that each of the triangles AKB, DKC is isosceles.
10. If one angle of a triangle be equal to the sum of the other two, the greatest side is double of the distance of its middle point from the opposite angle.

ON PARALLELS AND PARALLELOGRAMS.

11. If a straight line meets two parallel straight lines, and the two interior angles on the same side are bisected; shew that the bisectors meet at right angles. [r. 29, I. 32.]
12. The straight lines drawn from any point in the bisector of an angle parallel to the arms of the angle, and terminated by them, are equal; and the resulting figure is a rhombus.
13. The middle point of any straight line which meets two parallel straight lines, and is terminated by them, is equidistant from the parallels.
14. A straight line drawn between two parallels and terminated by them, is bisected; shew that any other straight line passing through the middle point and terminated by the parallels, is also bisected at that point.
15. If through a point equidistant from two parallel straight lines, two straight lines are drawn cutting the parallels, the portions of the latter thus intercepted are equal.
16. $A B$ and $C D$ are two given straight lines, and X is a given point in $A B$: find a point Y in $A B$ such that $Y X$ may be equal to the perpendicular distance of Y from CD.
17. $A B C$ is an isosceles triangle; required to draw a straight line DE parallel to the base $B C$, and meeting the equal sides in D and E, so that $B D, D E, E C$ may be all equal.
18. $A B C$ is any triangle; required to draw a straight line $D E$ parallel to the base $B C$, and meeting the other sides in D and E, so that $D E$ may be equal to the sum of $B D$ and $C E$.
19. If two straight lines are parallel to two other straight lines, each to each ; and if the angles contained by each pair are bisected, shew that the bisecting lines are either parallel or perpendicular to one another.
20. The straight line which joins the middle points of two sides of a triangle is equal to half the third side. [See Theorem D.]
21. Shew that the three straight lines which join the middle points of the sides of a triangle, divide it into four triangles which are identically equal.
22. Any straight line drawn from the vertex of a triangle to the base is bisected by the straight line which joins the middle points of the other sides of the triangle.
23. $A B, A C$ are two given straight lines, and P is a given point between them; required to draw through P a straight line terminated by $A B, A C$, and bisected by P.
24. $A B C D$ is a parallelogram, and X, Y are the middle points of the opposite sides $A D, B C$: shew that $B X$ and $D Y$ trisect the diagonal AC.
25. If the middle points of adjacent sides of any quadrilateral be joined, the figure thus formed is a parallelogram.
26. Shew that the straight lines which join the middle points of opposite sides of a quadrilateral, bisect one another.

ON AREAS.

27. Shew that a parallelogram is bisected by any straight line which passes through the middle point of one of its diagonals. [I. 29, 26.]
28. Bisect a parallelogram by a straight line drawn through a given point.
29. Bisect a parallelogram by a straight line drawn perpendicular to one of its sides.
30. Bisect a parallelogran by a straight line drawn parallel to a given straight line.
31. $A B C D$ is a trapezium in which the side $A B$ is parallel to DC. Shew that its area is equal to the area of a parallelogram formed by drawing through X, the middle point of $B C$, a straight line parallel to AD. [I. 29, 26.]
32. If two straight lines $A B, C D$ intersect at X, and if the straight lines $A C$ and $B C$, which join their extrenities are parallel, shew that the triangle $A X D$ is equal to the triangle $B X C$.
33. If two straight lines $A B, C D$ intersect at X, so that the triangle $A X D$ is equal to the triangle $X C D$, then $A C$ and $B D$ are parallel.
34. $A B C D$ is a parallelogram, and X any point in the diagonal $A C$ produced; shew that the triangles $X B C, X D C$ are equal. [See Ex. 13, p. 70.]
35. If the middle points of the sides of a quadrilateral be joined in order, the parallelogram so formed [see Ex. 25] is equal to half the given figure.

MISCELLANEOUS EXERCISES.

36. A is the vertex of an isosceles triangle $A B C$, and $B A$ is produced to D, so that $A D$ is equal to $B A$; if $D C$ is drawn, shew that $B C D$ is a right angle.
37. The straight line joining the middle point of the hypotenuse of a right-angled triangle to the right angle is equal to half the hypotenuse.
38. From the extremities of the base of a triangle perpendiculars are drawn to the opposite sides (produced if necessary) ; shew that the straight lines which join the middle point of the base to the feet of the perpendiculars are equal.
39. In a triangle $A B C, A D$ is drawn perpendicular to $B C$; and X, Y, Z are the middle points of the sides $B C, C A, A B$ respectively : shew that each of the angles $\mathrm{ZXY}, \mathrm{ZDY}$ is equal to the angle BAC.
40. In a right-angled triangle, if a perpendicular be drawn from the right angle to the hypotenuse, the two triangles thus formed are equiangular to one another.
41. Given the three middle points of the sides of a triangle, construct the triangle. [See Theorem D.]
42. If three parallel straight lines make equal intercepts on a fourth straight line, they will also make equal intercepts on any other straight line which meets them.
43. Shew that the bisectors of two exterior angles of a triangle meet on the bisector of the third angle. [See Theorem F.]
44. If in a right-angled triangle one of the acute angles is double of the other, shew that the hypotenuse is double of the shorter side.
45. In a triangle $A B C$, if $A C$ is not greater than $A B$, shew that any straight line drawn through the vertex A, and terminated by the base $B C$, is less than $A B$.
46. $A B C$ is a triangle, and the vertical angle $B A C$ is bisected by a straight line which meets the base $B C$ in X; shew that $B A$ is greater than BX, and CA greater than CX. Hence obtain a proof of I .20 .
47. The perpendicular is the shortest straight line that can be drawn from a given point to a given straight line; and of others, that which is nearer to the perpendicular is less than the more remote; and two, and only two equal straight lines can be drawn from the given point to the given straight line, one on each side of the perpendicular.
48. The sum of the distances of any point from the three angular points of a triangle is greater than half its perimeter.
49. The sum of the distances of any point within a triangle from its angular points is less than the perimeter of the triangle.
50. In the figure of I. 47 , shew that
(i) the sum of the squares on $A B$ and $A E$ is equal to the sum of the squares on $A C$ and $A D$;
(ii) the square on $E K$ is equal to the square on $A B$ with four times the square on $A C$;
(iii) the sum of the squares on EK and FD is equal to five times the square on $B C$.

HARDER MISCELLANEOUS EXERCISES.

51. The perimeter of a quadrilateral is greater than the sum of its diagonals.
52. In a triangle any two sides are together greater than twice the median which bisects the remaining side. [See Def., p. 79.]
[Produce the median, and complete the construction after the manner of i. 16.]
53. Use the properties of the equilateral triangle to trisect a given finite straight line.
54. Construct a triangle having given the base, one of the angles at the base, and the sum of the remaining sides.
55. Construct a triangle having given the base, one of the angles at the base, and the difference of the remaining sides.
[Two cases arise, according as the side opposite to the given angle is greater or less than the other.]
56. Prove that the straight line which joins the middle points of the oblique sides of a trapezium [see note, Def. 34] is
(i) parallel to the two parallel sides ;
(ii) equal to half the sum of the parallel sides.
57. The sum of the perpendiculars drawn from any point in the base of an isosceles triangle to the equal sides is equal to the perpendicular drawn from either extremity of the base to the opposite side.
58. Shew that the difference of the perpendiculars drawn to the equal sides of an isosceles triangle from any point in the base produced is constant, i.e. the same whatever point is taken.
59. In any triangle if a perpendicular be drawn from one extremity of the base to the bisector of the vertical angle ; then (i) it will make with either of the sides containing the vertical angle an angle equal to half the sum of the angles at the base ; (ii) it will make with the base an angle equal to half the difference of the angles at the base.
60. In any triangle the angle contained by the bisector of the vertical angle and the perpendicular from the vertex to the base is equal to half the difference of the base angles.
61. In any triangle the sum of the medians is less than the perimeter. [See Ex. 52.]
62. If the vertical angle of a triangle is contained by unequal sides, then (i) the median drawn from the vertex lies within the angle contained by the bisector of the vertical angle and the longer side; and (ii) the median is greater than the bisector of the vertical angle.
63. Prove that a trapezium is equal to a parallelogram whose base is half the sum of the parallel sides of the given figure, and whose altitude is equal to the perpendicular distance between them. [See Ex. 56.]
64. $A B C$ is a triangle, and D is any point in $A B$: it is required to draw through D a straight line $D E$ to meet $B C$ produced in E, so that the triangle DBE may be equal to the triangle $A B C$.
[Join DC. Through A draw AE parallel to DC ; and join DE.]
65. ABCD is a quadrilateral: it is required to construct a triangle equal in area to $A B C D$, having its vertex at a given point X in DC, and its base in the same straight line as $A B$.
66. Bisect a triangle $A B C$ by a straight line drawn through a given point P in one of its sides.
[Bisect $A B$ at Z; and join $C Z, C P$. Through Z draw $Z Q$ parallel to CP . Join PQ.]
67. $A B C$ is a triangle right-angled at A; the sides $A B, A C$ are intersected by a straight line $P Q$, and $B Q, P C$ are joined. Prove that the sum of the squares on $B Q, P C$ is equal to the sum of the squares on BC, PQ.
68. Divide a straight line into two parts so that
(i) the sum of their squares shall be equal to a given square;
(ii) the square on one part shall be double the square on the other part.

APPENDIX.

SPECIMEN EXAMINATION PAPERS OF THE SCIENCE AND ART DEPARTMENT, STAGE I.

A.

1. Reduce to the simplest form as a mixed number :

$$
\begin{align*}
& \text { (a) } \frac{2 \frac{1}{4}-\frac{2}{3} \text { of } 1 \frac{5}{6}}{\frac{1}{5} \text { of } 3 \frac{1}{3}+\frac{7}{8}} \div \frac{2 \frac{1}{2}-\frac{1}{3} \div \frac{4}{13}}{1 \frac{1}{4} \text { of } 8 \frac{1}{2}}+\frac{1}{1+\frac{5}{16}} \text {; } \\
& \text { (b) } \frac{0 \cdot 17+0 \cdot 65333 \ldots}{0.247 \div 2 \cdot 21} \text {. } \tag{8}
\end{align*}
$$

2. (a) Reduce £2. 7s. $6 d$. to a decimal of $£ 5.10$ s.
(b) Find the number of yards in 0.217 of a mile and a half. (6)
3. A square lawn is bordered by a path $4 \mathrm{ft}, 6 \mathrm{in}$. wide, the path and the lawn together occupying one-tenth of an acre. Find the expense of covering the path with gravel at a cost of $7 \frac{1}{2} d$. a square yard.
(10)
4. The larger of two rooms is 47 ft . long, 30 ft . wide, and 25 ft . high ; the smaller is 25 ft . long, 20 ft . wide, and 18 ft . high; compare their cubic contents.

If the four walls of the larger room are painted at a cost of $1 s .3 d$. a square yard, and the four walls and ceiling of the smaller room at a cost of $1 s .4 \frac{1}{2} d$. a square yard, compare the expenses of painting the rooms.
5. A man realised $£ 2730$ by selling a 3 per cent. stock at $113 \frac{3}{4}$, and invested one-third of this sum in a 4 per cent. stock at 130 , and the remainder in a $2 \frac{3}{4}$ per cent. stock at $110 \frac{5}{8}$; find how much of each kind of stock he bought, and the difference it made in his income.
(10)
6. (a) Find to the second place of decimals the number of square yards in 7280 square metres. (b) Find to the nearest penny the value of 900 kilogrammes of a material which costs $£ 25.14 \mathrm{~s} .6 \mathrm{~d}$. a ton. N.B. -1 metre $=3 \cdot 28092 \mathrm{ft}$., 1 kilogramme $=2 \cdot 2046 \mathrm{lbs}$. (10)
B.
7. If at a point in a straight line two other straight lines, on opposite sides of it, make the adjacent angles together equal to two right angles, shew that these two straight lines are in the same straight line.

Equilateral triangles BAD, CAE are described on the sides $A B, A C$ of an equilateral triangle $A B C$; shew that $D A$ is in the same straight line with $A E$.
8. Shew that the greater side of a triangle is opposite to the greater angle.

The angles B and C of a triangle $A B C$ are acute angles, and C is greater than $B ; P$ is a point in $B C$. Shew that $A P$ is shorter than $A B$, and find for what positions of $P, A P$ will also be shorter than AC.
9. Define parallel straight lines and alternate angles.

If a straight line be drawn across two parallel straight lines, shew that it makes the alternate angles equal.
$A B C$ is an equilateral triangle whose angles B and C are bisected by $B D$ and $C D$ respectively; $D E$ is drawn parallel to $A B$ to meet $B C$ in E, and $D F$ is drawn parallel to $A C$ to meet $B C$ in F. Shew that BE, EF, FC are all equal.
10. Shew that the complements, which are about a diameter of any parallelogram, are equal.

Given a rectangle and a straight line, shew how to construct a rectangle, equal to the given rectangle, and having a side equal to the given line.
11. $A B$ is the hypotenuse of a right-angled triangle $A B C$; in $A B$ take a point D, such that $B D$ equals $B C$; draw $C E$ at right angles to $A B$, and meeting it in E; shew that $C D$ bisects the angle ACE.
12. Shew how to construct a square which shall have two adjacent sides passing through two given points, and the intersection of the diagonals at a third given point.

Shew that there are generally two solutions.

C.

13. Define a factor, a term, a power, a root, as used in Algebra. From a rod $a \mathrm{ft}$. long, $b-c \mathrm{ft}$. are cut off; express in two ways, with brackets, and without brackets, the number of feet that are left.

Find the numerical values of the following expressions when $x=-1, y=-2, z=\frac{1}{2}$:
(a) $2 x-\{9 y-8 x+2 z-(4 x+y)\}$.
(b) $(x+y-z)^{2}+(x+y)^{2}(x-y+z)+(x-y)^{3}$.
14. (a) Simplify $(x y-1)\left(x^{2} y^{2}+x y+1\right)+(x y+1)\left(x^{2} y^{2}-x y+1\right)$.
(b) Divide $\frac{1}{8} x^{3}+\frac{1}{27} y^{3}$ by $\frac{1}{2} x+\frac{1}{3} y$.
15. (a) Simplify $\frac{x+1}{x^{2}-x}-\frac{x+2}{x^{2}-1}-\frac{1}{x^{3}+1}$.
(b) Substitute $\frac{a}{a-1}$ for x, and $\frac{2 a}{2 a+1}$ for y, in $\frac{x y}{x-y}$, and reduce the result to its simplest form.
16. Write down the following expressions in factors:

$$
\begin{align*}
& \text { (a) } 15 x^{2}-16 x y-15 y^{2} . \\
& \text { (b) }(a+b+c)^{2}-4(b-c)^{2} . \\
& \text { (c) }(1+x)^{3}-(1-x)^{3} . \tag{12}
\end{align*}
$$

17. Solve the following equations :
(a) $\frac{x}{x-2}-\frac{x}{x+2}=\frac{1}{x-2}-\frac{4}{x+2}$.
(b) $a(x-a)=b(x+b)-2 a b$.
(c) $3 x-\frac{y}{2}=5, \quad \frac{x}{3}+\frac{y}{4}=3$.
18. Two boys, A and B, have money consisting of shillings and pennies. A has twice as many penuies as shillings; B, who has fivepence more than A, has three times as many pennies as shillings; together they have two and a half tirnes as many pennies as they have shillings. How much has each ?
[^3]
ELEMENTARY SCIENCE BOOKS.

Adapted to the Elementary Stages of the South Kensington Syllabus.
PRACTICAL PLANE AND SOLID GEOMETRY. With an Introduction to Graphic Statics. By J. Harrison, M.Inst.M.E., etc., Whitworth Scholar, and G. A. Baxandall. 2s. 6d.
ARITHMETIC FOR SCHOOLS. By Rev. J. B. Lоск, M.A. New Edition,.1894. 4s. 6d. Key, ios. 6d.
A TEXT-BOOK OF EUCLID'S ELEMENTS. By H. S. Hall, M.A., and F. H. Stevens, M.A. Book I., is. Books II. and III., 2 s. Books I. to III., 2s. 6d. Complete. 4s. 6d. KEY to Books I.-IV., 6s. 6d. KEY to V., VI., and XI., 3s. 6d. Complete, 8s. 6d.
algebra for Beginners. By H. S. Hall, M.A., and S. R. Knight, B.A. 2s. With Answers. 2s. 6d.
[This book deals with Algebra as far as Quadratic Equations.]
elementary algebra. By H. S. Hall, M.A., and S. R. Knight, B.A. 3s. 6d. Whi Answers. 4s. 6d. Key. 8s. 6d. - [Ihis Book covers thie Second and Third Stages.]

MECHANICS FOR BEGINNERS. By Rev. J. B. Lock. Part I. Mechanics of Solids. 2s. 6d.
MECHANICS FOR BEGINNERS. By W. Gallatly, M.A., 2s. 6d.
hyurostatics for Beginners. By F. W. Sanderson, M.A. 2s. 6 d .

ELEMENTARY LESSONS IN HEAT, LIGHT, AND SOUND. By Prof. D. E. Jones, B.Sc. 2s. 6d.
ELECTRICITY AND MAGNETISM FOR BEGINNERS. By Prof. S. P. Thompson, F.R.S.
[In preparation.
ELECTRICITY AND MAGNETISM FOR BEGINNERS. By F. W. Sanderson. 2s. 6d.

INORGANIC CHEMISTRY FOR BEGINNERS. By Sir Henry Roscoe, F.R.S., and Joseph Lunt, B.Sc. New Edition, 1895. 2s. 6d.
PRACTICAL INORGANIC CHEMISTRY. By G. S. Turpin, M.A., D.Sc. 2s. 6d.

A JUNIOR COURSE OF PRACTICAL CHEMISTRY. By F. Jones, F.C.S. With Preface by Sir H. E. Roscoe, F.R.S. Eighth Edition. 2s. 6d.
AN INTRODUCTION TO THE STUDY OF CHEMISTRY. By W. H. Perkin, Jun., Ph.D., and B. Lean, D.Sc. 2s. 6d.
ORGANIC CHEMISTRY FOR BEGINNERS. By G. S. Turbin, M.A. 2s. 6d.
PHYSIOLOGY FOR BEGINNERS. By Prof. M. Foster and Dr. Shore. 2s. 6d.
PHYSIOGRAPHY FOR BEGINNERS. By A. T. Simmons, B.Sc. (Lond.). 2s. 6d.

HYGIENE FOR BEGINNERS. By E. S. Reynolds. 2s. 6d.
MACMILLAN AND CO., LTd., LONDON.

BOOKS FOR ORGANISED SCIENCE SCHOOLS.

 FIRST YEAR COURSES.ELEMENTARY PHYSICS.
AN EXERCISE BOOK OF ELEMENTARY PRACTICAL PHYSICS, for Organised Science Schools, Evening Continuation Classes, and Elementary Day Schools. By R. A. Gregory, F.R.A.S. Fcap. 4to. 2s. 6d.
ELEMENTARY COURSE OF PRACTICAL SCIENCE. Part I. By Hugh Gordon, M.A., Inspector of Science Schools, Science and Art Department. is.
PRACTICAL LESSONS IN PHYSICAL MEASUREMENT. By Alfred Earl, M.A. 5s.
A PRIMER OF PHySICS. By Prof. Balfour Stewart. Is.
elementary Physics. By Prof. Balfour Stewart, F.R.S. New Edition, thoroughly Revised, 1895. 4s. 6d. Questions, 2s.
ELEMENTS OF PHYSiCS. By C. E. Fessenden. I. Matter and its Properties. II. Kinematics. III. Dynamics. IV. Heat. 3 s .

A GRADUATED COURSE OF NATURAL SCIENCE. By B. Loewy. Part I., 2s. Part II., 2s. 6d.

ELEMENTARY CHEMISTRY - THEORETICAL,
CHEMISTRY FOR BEGINNERS. By Sir Henry Roscoe, F.R.S., and J. Lunt, B.Sc. 2s. 6d.

THE ELEMENTS OF CHEMISTRY. By Prof. Ira Remsen. New Edition. 2s. 6d.
ELEMENTARY CHEMISTRY-PRACTICAL,
PRACTICAL INORGANIC. CHEMISTRY. By G. S. Turpin, M.A., D.Sc. 2s. 6d.
A JUNIOR COURSE OF PRACTICAL CHEMISTRY. By F. Jones, F.C.S. With Preface by Sir H. E. Roscoe, F.R.S. Eighth Edition. 2s. 6d.
AN INTRODUCTION TO, THE STUDY OF Chemistry. By W. H. Perkin, Jun., Ph.D., and B. Lean, D.Sc. 2s. 6d.

A PRIMER OF CHEmiStry. By Sir Henry Roscoe, F.R.S. Is.

MACMILLAN AND CO., Ltd., LONDON.

prasare

Ehereenoued ivencpo

cosclu/fortit andy

[^0]: *The metre was originally chosen, because it was belicved to be one tenmillionth part of the distance from the North Pole to the Equator: but this estimate was based on an imperfect calculation of the Earth's magnitude.
 \dagger Multiples in the Metric System are distinguished by the Greek prefixes Deca-, Hecto-, Kilo- ; and for these it is convenient to use capital initial letters.

 Submultiples are marked by the Latin prefixes deci-, centi-, milli-; and may further be distinguished by small initials.

[^1]: *26. Seventy-five per cent. of the area of a farm is arable; of the remainder eighty-five per cent. is pasture, and the rest is waste: the area of the waste is 3 a .0 r .20 p . What is the area of the farm?

[^2]: E.C.

[^3]: GLASGOW: PRINTED AT THE UNIVERSITY PRESS BY ROBERT MACLEHOSE AND CO.

